275 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGETRF2
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       RECURSIVE SUBROUTINE CGETRF2( M, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX            A( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGETRF2 computes an LU factorization of a general M-by-N matrix A
 | 
						|
*> using partial pivoting with row interchanges.
 | 
						|
*>
 | 
						|
*> The factorization has the form
 | 
						|
*>    A = P * L * U
 | 
						|
*> where P is a permutation matrix, L is lower triangular with unit
 | 
						|
*> diagonal elements (lower trapezoidal if m > n), and U is upper
 | 
						|
*> triangular (upper trapezoidal if m < n).
 | 
						|
*>
 | 
						|
*> This is the recursive version of the algorithm. It divides
 | 
						|
*> the matrix into four submatrices:
 | 
						|
*>
 | 
						|
*>        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
 | 
						|
*>    A = [ -----|----- ]  with n1 = min(m,n)/2
 | 
						|
*>        [  A21 | A22  ]       n2 = n-n1
 | 
						|
*>
 | 
						|
*>                                       [ A11 ]
 | 
						|
*> The subroutine calls itself to factor [ --- ],
 | 
						|
*>                                       [ A12 ]
 | 
						|
*>                 [ A12 ]
 | 
						|
*> do the swaps on [ --- ], solve A12, update A22,
 | 
						|
*>                 [ A22 ]
 | 
						|
*>
 | 
						|
*> then calls itself to factor A22 and do the swaps on A21.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix to be factored.
 | 
						|
*>          On exit, the factors L and U from the factorization
 | 
						|
*>          A = P*L*U; the unit diagonal elements of L are not stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (min(M,N))
 | 
						|
*>          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | 
						|
*>          matrix was interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
 | 
						|
*>                has been completed, but the factor U is exactly
 | 
						|
*>                singular, and division by zero will occur if it is used
 | 
						|
*>                to solve a system of equations.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup complexGEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      RECURSIVE SUBROUTINE CGETRF2( M, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX            A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
 | 
						|
     $                     ZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               SFMIN
 | 
						|
      COMPLEX            TEMP
 | 
						|
      INTEGER            I, IINFO, N1, N2
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      INTEGER            ICAMAX
 | 
						|
      EXTERNAL           SLAMCH, ICAMAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM, CSCAL, CLASWP, CTRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CGETRF2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
 | 
						|
      IF ( M.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code for one row case
 | 
						|
*        Just need to handle IPIV and INFO
 | 
						|
*
 | 
						|
         IPIV( 1 ) = 1
 | 
						|
         IF ( A(1,1).EQ.ZERO )
 | 
						|
     $      INFO = 1
 | 
						|
*
 | 
						|
      ELSE IF( N.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code for one column case
 | 
						|
*
 | 
						|
*
 | 
						|
*        Compute machine safe minimum
 | 
						|
*
 | 
						|
         SFMIN = SLAMCH('S')
 | 
						|
*
 | 
						|
*        Find pivot and test for singularity
 | 
						|
*
 | 
						|
         I = ICAMAX( M, A( 1, 1 ), 1 )
 | 
						|
         IPIV( 1 ) = I
 | 
						|
         IF( A( I, 1 ).NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*           Apply the interchange
 | 
						|
*
 | 
						|
            IF( I.NE.1 ) THEN
 | 
						|
               TEMP = A( 1, 1 )
 | 
						|
               A( 1, 1 ) = A( I, 1 )
 | 
						|
               A( I, 1 ) = TEMP
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Compute elements 2:M of the column
 | 
						|
*
 | 
						|
            IF( ABS(A( 1, 1 )) .GE. SFMIN ) THEN
 | 
						|
               CALL CSCAL( M-1, ONE / A( 1, 1 ), A( 2, 1 ), 1 )
 | 
						|
            ELSE
 | 
						|
               DO 10 I = 1, M-1
 | 
						|
                  A( 1+I, 1 ) = A( 1+I, 1 ) / A( 1, 1 )
 | 
						|
   10          CONTINUE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
            INFO = 1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use recursive code
 | 
						|
*
 | 
						|
         N1 = MIN( M, N ) / 2
 | 
						|
         N2 = N-N1
 | 
						|
*
 | 
						|
*               [ A11 ]
 | 
						|
*        Factor [ --- ]
 | 
						|
*               [ A21 ]
 | 
						|
*
 | 
						|
         CALL CGETRF2( M, N1, A, LDA, IPIV, IINFO )
 | 
						|
 | 
						|
         IF ( INFO.EQ.0 .AND. IINFO.GT.0 )
 | 
						|
     $      INFO = IINFO
 | 
						|
*
 | 
						|
*                              [ A12 ]
 | 
						|
*        Apply interchanges to [ --- ]
 | 
						|
*                              [ A22 ]
 | 
						|
*
 | 
						|
         CALL CLASWP( N2, A( 1, N1+1 ), LDA, 1, N1, IPIV, 1 )
 | 
						|
*
 | 
						|
*        Solve A12
 | 
						|
*
 | 
						|
         CALL CTRSM( 'L', 'L', 'N', 'U', N1, N2, ONE, A, LDA,
 | 
						|
     $               A( 1, N1+1 ), LDA )
 | 
						|
*
 | 
						|
*        Update A22
 | 
						|
*
 | 
						|
         CALL CGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( N1+1, 1 ), LDA,
 | 
						|
     $               A( 1, N1+1 ), LDA, ONE, A( N1+1, N1+1 ), LDA )
 | 
						|
*
 | 
						|
*        Factor A22
 | 
						|
*
 | 
						|
         CALL CGETRF2( M-N1, N2, A( N1+1, N1+1 ), LDA, IPIV( N1+1 ),
 | 
						|
     $                 IINFO )
 | 
						|
*
 | 
						|
*        Adjust INFO and the pivot indices
 | 
						|
*
 | 
						|
         IF ( INFO.EQ.0 .AND. IINFO.GT.0 )
 | 
						|
     $      INFO = IINFO + N1
 | 
						|
         DO 20 I = N1+1, MIN( M, N )
 | 
						|
            IPIV( I ) = IPIV( I ) + N1
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
*        Apply interchanges to A21
 | 
						|
*
 | 
						|
         CALL CLASWP( N1, A( 1, 1 ), LDA, N1+1, MIN( M, N), IPIV, 1 )
 | 
						|
*
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGETRF2
 | 
						|
*
 | 
						|
      END
 |