436 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			436 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SGELSX solves overdetermined or underdetermined systems for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGELSX + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsx.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsx.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsx.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 | 
						|
*                          WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
 | 
						|
*       REAL               RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            JPVT( * )
 | 
						|
*       REAL               A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> This routine is deprecated and has been replaced by routine SGELSY.
 | 
						|
*>
 | 
						|
*> SGELSX computes the minimum-norm solution to a real linear least
 | 
						|
*> squares problem:
 | 
						|
*>     minimize || A * X - B ||
 | 
						|
*> using a complete orthogonal factorization of A.  A is an M-by-N
 | 
						|
*> matrix which may be rank-deficient.
 | 
						|
*>
 | 
						|
*> Several right hand side vectors b and solution vectors x can be
 | 
						|
*> handled in a single call; they are stored as the columns of the
 | 
						|
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | 
						|
*> matrix X.
 | 
						|
*>
 | 
						|
*> The routine first computes a QR factorization with column pivoting:
 | 
						|
*>     A * P = Q * [ R11 R12 ]
 | 
						|
*>                 [  0  R22 ]
 | 
						|
*> with R11 defined as the largest leading submatrix whose estimated
 | 
						|
*> condition number is less than 1/RCOND.  The order of R11, RANK,
 | 
						|
*> is the effective rank of A.
 | 
						|
*>
 | 
						|
*> Then, R22 is considered to be negligible, and R12 is annihilated
 | 
						|
*> by orthogonal transformations from the right, arriving at the
 | 
						|
*> complete orthogonal factorization:
 | 
						|
*>    A * P = Q * [ T11 0 ] * Z
 | 
						|
*>                [  0  0 ]
 | 
						|
*> The minimum-norm solution is then
 | 
						|
*>    X = P * Z**T [ inv(T11)*Q1**T*B ]
 | 
						|
*>                 [        0         ]
 | 
						|
*> where Q1 consists of the first RANK columns of Q.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of
 | 
						|
*>          columns of matrices B and X. NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, A has been overwritten by details of its
 | 
						|
*>          complete orthogonal factorization.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the M-by-NRHS right hand side matrix B.
 | 
						|
*>          On exit, the N-by-NRHS solution matrix X.
 | 
						|
*>          If m >= n and RANK = n, the residual sum-of-squares for
 | 
						|
*>          the solution in the i-th column is given by the sum of
 | 
						|
*>          squares of elements N+1:M in that column.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,M,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] JPVT
 | 
						|
*> \verbatim
 | 
						|
*>          JPVT is INTEGER array, dimension (N)
 | 
						|
*>          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
 | 
						|
*>          initial column, otherwise it is a free column.  Before
 | 
						|
*>          the QR factorization of A, all initial columns are
 | 
						|
*>          permuted to the leading positions; only the remaining
 | 
						|
*>          free columns are moved as a result of column pivoting
 | 
						|
*>          during the factorization.
 | 
						|
*>          On exit, if JPVT(i) = k, then the i-th column of A*P
 | 
						|
*>          was the k-th column of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          RCOND is used to determine the effective rank of A, which
 | 
						|
*>          is defined as the order of the largest leading triangular
 | 
						|
*>          submatrix R11 in the QR factorization with pivoting of A,
 | 
						|
*>          whose estimated condition number < 1/RCOND.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RANK
 | 
						|
*> \verbatim
 | 
						|
*>          RANK is INTEGER
 | 
						|
*>          The effective rank of A, i.e., the order of the submatrix
 | 
						|
*>          R11.  This is the same as the order of the submatrix T11
 | 
						|
*>          in the complete orthogonal factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension
 | 
						|
*>                      (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup realGEsolve
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
 | 
						|
     $                   WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
 | 
						|
      REAL               RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            JPVT( * )
 | 
						|
      REAL               A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      INTEGER            IMAX, IMIN
 | 
						|
      PARAMETER          ( IMAX = 1, IMIN = 2 )
 | 
						|
      REAL               ZERO, ONE, DONE, NTDONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, DONE = ZERO,
 | 
						|
     $                   NTDONE = ONE )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
 | 
						|
      REAL               ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
 | 
						|
     $                   SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH, SLANGE
 | 
						|
      EXTERNAL           SLAMCH, SLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEQPF, SLABAD, SLAIC1, SLASCL, SLASET, SLATZM,
 | 
						|
     $                   SORM2R, STRSM, STZRQF, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      MN = MIN( M, N )
 | 
						|
      ISMIN = MN + 1
 | 
						|
      ISMAX = 2*MN + 1
 | 
						|
*
 | 
						|
*     Test the input arguments.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGELSX', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( MIN( M, N, NRHS ).EQ.0 ) THEN
 | 
						|
         RANK = 0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine parameters
 | 
						|
*
 | 
						|
      SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL SLABAD( SMLNUM, BIGNUM )
 | 
						|
*
 | 
						|
*     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = SLANGE( 'M', M, N, A, LDA, WORK )
 | 
						|
      IASCL = 0
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 1
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 2
 | 
						|
      ELSE IF( ANRM.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Matrix all zero. Return zero solution.
 | 
						|
*
 | 
						|
         CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | 
						|
         RANK = 0
 | 
						|
         GO TO 100
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      BNRM = SLANGE( 'M', M, NRHS, B, LDB, WORK )
 | 
						|
      IBSCL = 0
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 1
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
 | 
						|
         IBSCL = 2
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute QR factorization with column pivoting of A:
 | 
						|
*        A * P = Q * R
 | 
						|
*
 | 
						|
      CALL SGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
 | 
						|
*
 | 
						|
*     workspace 3*N. Details of Householder rotations stored
 | 
						|
*     in WORK(1:MN).
 | 
						|
*
 | 
						|
*     Determine RANK using incremental condition estimation
 | 
						|
*
 | 
						|
      WORK( ISMIN ) = ONE
 | 
						|
      WORK( ISMAX ) = ONE
 | 
						|
      SMAX = ABS( A( 1, 1 ) )
 | 
						|
      SMIN = SMAX
 | 
						|
      IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
 | 
						|
         RANK = 0
 | 
						|
         CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
 | 
						|
         GO TO 100
 | 
						|
      ELSE
 | 
						|
         RANK = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      IF( RANK.LT.MN ) THEN
 | 
						|
         I = RANK + 1
 | 
						|
         CALL SLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
 | 
						|
     $                A( I, I ), SMINPR, S1, C1 )
 | 
						|
         CALL SLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
 | 
						|
     $                A( I, I ), SMAXPR, S2, C2 )
 | 
						|
*
 | 
						|
         IF( SMAXPR*RCOND.LE.SMINPR ) THEN
 | 
						|
            DO 20 I = 1, RANK
 | 
						|
               WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
 | 
						|
               WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
 | 
						|
   20       CONTINUE
 | 
						|
            WORK( ISMIN+RANK ) = C1
 | 
						|
            WORK( ISMAX+RANK ) = C2
 | 
						|
            SMIN = SMINPR
 | 
						|
            SMAX = SMAXPR
 | 
						|
            RANK = RANK + 1
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Logically partition R = [ R11 R12 ]
 | 
						|
*                             [  0  R22 ]
 | 
						|
*     where R11 = R(1:RANK,1:RANK)
 | 
						|
*
 | 
						|
*     [R11,R12] = [ T11, 0 ] * Y
 | 
						|
*
 | 
						|
      IF( RANK.LT.N )
 | 
						|
     $   CALL STZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
 | 
						|
*
 | 
						|
*     Details of Householder rotations stored in WORK(MN+1:2*MN)
 | 
						|
*
 | 
						|
*     B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
 | 
						|
*
 | 
						|
      CALL SORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
 | 
						|
     $             B, LDB, WORK( 2*MN+1 ), INFO )
 | 
						|
*
 | 
						|
*     workspace NRHS
 | 
						|
*
 | 
						|
*     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
 | 
						|
*
 | 
						|
      CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
 | 
						|
     $            NRHS, ONE, A, LDA, B, LDB )
 | 
						|
*
 | 
						|
      DO 40 I = RANK + 1, N
 | 
						|
         DO 30 J = 1, NRHS
 | 
						|
            B( I, J ) = ZERO
 | 
						|
   30    CONTINUE
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
 | 
						|
*
 | 
						|
      IF( RANK.LT.N ) THEN
 | 
						|
         DO 50 I = 1, RANK
 | 
						|
            CALL SLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
 | 
						|
     $                   WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
 | 
						|
     $                   WORK( 2*MN+1 ) )
 | 
						|
   50    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     workspace NRHS
 | 
						|
*
 | 
						|
*     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
 | 
						|
*
 | 
						|
      DO 90 J = 1, NRHS
 | 
						|
         DO 60 I = 1, N
 | 
						|
            WORK( 2*MN+I ) = NTDONE
 | 
						|
   60    CONTINUE
 | 
						|
         DO 80 I = 1, N
 | 
						|
            IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
 | 
						|
               IF( JPVT( I ).NE.I ) THEN
 | 
						|
                  K = I
 | 
						|
                  T1 = B( K, J )
 | 
						|
                  T2 = B( JPVT( K ), J )
 | 
						|
   70             CONTINUE
 | 
						|
                  B( JPVT( K ), J ) = T1
 | 
						|
                  WORK( 2*MN+K ) = DONE
 | 
						|
                  T1 = T2
 | 
						|
                  K = JPVT( K )
 | 
						|
                  T2 = B( JPVT( K ), J )
 | 
						|
                  IF( JPVT( K ).NE.I )
 | 
						|
     $               GO TO 70
 | 
						|
                  B( I, J ) = T1
 | 
						|
                  WORK( 2*MN+K ) = DONE
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
   80    CONTINUE
 | 
						|
   90 CONTINUE
 | 
						|
*
 | 
						|
*     Undo scaling
 | 
						|
*
 | 
						|
      IF( IASCL.EQ.1 ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL SLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
 | 
						|
     $                INFO )
 | 
						|
      ELSE IF( IASCL.EQ.2 ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
 | 
						|
         CALL SLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
 | 
						|
     $                INFO )
 | 
						|
      END IF
 | 
						|
      IF( IBSCL.EQ.1 ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      ELSE IF( IBSCL.EQ.2 ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
  100 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGELSX
 | 
						|
*
 | 
						|
      END
 |