517 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			517 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGEEV + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeev.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeev.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeev.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
 | 
						|
*                         LDVR, WORK, LWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBVL, JOBVR
 | 
						|
*       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
*      $                   WI( * ), WORK( * ), WR( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGEEV computes for an N-by-N real nonsymmetric matrix A, the
 | 
						|
*> eigenvalues and, optionally, the left and/or right eigenvectors.
 | 
						|
*>
 | 
						|
*> The right eigenvector v(j) of A satisfies
 | 
						|
*>                  A * v(j) = lambda(j) * v(j)
 | 
						|
*> where lambda(j) is its eigenvalue.
 | 
						|
*> The left eigenvector u(j) of A satisfies
 | 
						|
*>               u(j)**H * A = lambda(j) * u(j)**H
 | 
						|
*> where u(j)**H denotes the conjugate-transpose of u(j).
 | 
						|
*>
 | 
						|
*> The computed eigenvectors are normalized to have Euclidean norm
 | 
						|
*> equal to 1 and largest component real.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBVL
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVL is CHARACTER*1
 | 
						|
*>          = 'N': left eigenvectors of A are not computed;
 | 
						|
*>          = 'V': left eigenvectors of A are computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBVR
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVR is CHARACTER*1
 | 
						|
*>          = 'N': right eigenvectors of A are not computed;
 | 
						|
*>          = 'V': right eigenvectors of A are computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the N-by-N matrix A.
 | 
						|
*>          On exit, A has been overwritten.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WR
 | 
						|
*> \verbatim
 | 
						|
*>          WR is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WI
 | 
						|
*> \verbatim
 | 
						|
*>          WI is REAL array, dimension (N)
 | 
						|
*>          WR and WI contain the real and imaginary parts,
 | 
						|
*>          respectively, of the computed eigenvalues.  Complex
 | 
						|
*>          conjugate pairs of eigenvalues appear consecutively
 | 
						|
*>          with the eigenvalue having the positive imaginary part
 | 
						|
*>          first.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is REAL array, dimension (LDVL,N)
 | 
						|
*>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
 | 
						|
*>          after another in the columns of VL, in the same order
 | 
						|
*>          as their eigenvalues.
 | 
						|
*>          If JOBVL = 'N', VL is not referenced.
 | 
						|
*>          If the j-th eigenvalue is real, then u(j) = VL(:,j),
 | 
						|
*>          the j-th column of VL.
 | 
						|
*>          If the j-th and (j+1)-st eigenvalues form a complex
 | 
						|
*>          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
 | 
						|
*>          u(j+1) = VL(:,j) - i*VL(:,j+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          The leading dimension of the array VL.  LDVL >= 1; if
 | 
						|
*>          JOBVL = 'V', LDVL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is REAL array, dimension (LDVR,N)
 | 
						|
*>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
 | 
						|
*>          after another in the columns of VR, in the same order
 | 
						|
*>          as their eigenvalues.
 | 
						|
*>          If JOBVR = 'N', VR is not referenced.
 | 
						|
*>          If the j-th eigenvalue is real, then v(j) = VR(:,j),
 | 
						|
*>          the j-th column of VR.
 | 
						|
*>          If the j-th and (j+1)-st eigenvalues form a complex
 | 
						|
*>          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
 | 
						|
*>          v(j+1) = VR(:,j) - i*VR(:,j+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          The leading dimension of the array VR.  LDVR >= 1; if
 | 
						|
*>          JOBVR = 'V', LDVR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= max(1,3*N), and
 | 
						|
*>          if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
 | 
						|
*>          performance, LWORK must generally be larger.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = i, the QR algorithm failed to compute all the
 | 
						|
*>                eigenvalues, and no eigenvectors have been computed;
 | 
						|
*>                elements i+1:N of WR and WI contain eigenvalues which
 | 
						|
*>                have converged.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup realGEeigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
 | 
						|
     $                  LDVR, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBVL, JOBVR
 | 
						|
      INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
     $                   WI( * ), WORK( * ), WR( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
 | 
						|
      CHARACTER          SIDE
 | 
						|
      INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
 | 
						|
     $                   MAXWRK, MINWRK, NOUT
 | 
						|
      REAL               ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
 | 
						|
     $                   SN
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      LOGICAL            SELECT( 1 )
 | 
						|
      REAL               DUM( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLABAD, SLACPY,
 | 
						|
     $                   SLARTG, SLASCL, SORGHR, SROT, SSCAL, STREVC,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV, ISAMAX
 | 
						|
      REAL               SLAMCH, SLANGE, SLAPY2, SNRM2
 | 
						|
      EXTERNAL           LSAME, ILAENV, ISAMAX, SLAMCH, SLANGE, SLAPY2,
 | 
						|
     $                   SNRM2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      WANTVL = LSAME( JOBVL, 'V' )
 | 
						|
      WANTVR = LSAME( JOBVR, 'V' )
 | 
						|
      IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*      (Note: Comments in the code beginning "Workspace:" describe the
 | 
						|
*       minimal amount of workspace needed at that point in the code,
 | 
						|
*       as well as the preferred amount for good performance.
 | 
						|
*       NB refers to the optimal block size for the immediately
 | 
						|
*       following subroutine, as returned by ILAENV.
 | 
						|
*       HSWORK refers to the workspace preferred by SHSEQR, as
 | 
						|
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
 | 
						|
*       the worst case.)
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( N.EQ.0 ) THEN
 | 
						|
            MINWRK = 1
 | 
						|
            MAXWRK = 1
 | 
						|
         ELSE
 | 
						|
            MAXWRK = 2*N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 )
 | 
						|
            IF( WANTVL ) THEN
 | 
						|
               MINWRK = 4*N
 | 
						|
               MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
 | 
						|
     $                       'SORGHR', ' ', N, 1, N, -1 ) )
 | 
						|
               CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
 | 
						|
     $                WORK, -1, INFO )
 | 
						|
               HSWORK = WORK( 1 )
 | 
						|
               MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
 | 
						|
               MAXWRK = MAX( MAXWRK, 4*N )
 | 
						|
            ELSE IF( WANTVR ) THEN
 | 
						|
               MINWRK = 4*N
 | 
						|
               MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
 | 
						|
     $                       'SORGHR', ' ', N, 1, N, -1 ) )
 | 
						|
               CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
 | 
						|
     $                WORK, -1, INFO )
 | 
						|
               HSWORK = WORK( 1 )
 | 
						|
               MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
 | 
						|
               MAXWRK = MAX( MAXWRK, 4*N )
 | 
						|
            ELSE 
 | 
						|
               MINWRK = 3*N
 | 
						|
               CALL SHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR,
 | 
						|
     $                WORK, -1, INFO )
 | 
						|
               HSWORK = WORK( 1 )
 | 
						|
               MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
 | 
						|
            END IF
 | 
						|
            MAXWRK = MAX( MAXWRK, MINWRK )
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = MAXWRK
 | 
						|
*
 | 
						|
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -13
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGEEV ', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'P' )
 | 
						|
      SMLNUM = SLAMCH( 'S' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL SLABAD( SMLNUM, BIGNUM )
 | 
						|
      SMLNUM = SQRT( SMLNUM ) / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
*     Scale A if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = SLANGE( 'M', N, N, A, LDA, DUM )
 | 
						|
      SCALEA = .FALSE.
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
         SCALEA = .TRUE.
 | 
						|
         CSCALE = SMLNUM
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
         SCALEA = .TRUE.
 | 
						|
         CSCALE = BIGNUM
 | 
						|
      END IF
 | 
						|
      IF( SCALEA )
 | 
						|
     $   CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
 | 
						|
*
 | 
						|
*     Balance the matrix
 | 
						|
*     (Workspace: need N)
 | 
						|
*
 | 
						|
      IBAL = 1
 | 
						|
      CALL SGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
 | 
						|
*
 | 
						|
*     Reduce to upper Hessenberg form
 | 
						|
*     (Workspace: need 3*N, prefer 2*N+N*NB)
 | 
						|
*
 | 
						|
      ITAU = IBAL + N
 | 
						|
      IWRK = ITAU + N
 | 
						|
      CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
 | 
						|
     $             LWORK-IWRK+1, IERR )
 | 
						|
*
 | 
						|
      IF( WANTVL ) THEN
 | 
						|
*
 | 
						|
*        Want left eigenvectors
 | 
						|
*        Copy Householder vectors to VL
 | 
						|
*
 | 
						|
         SIDE = 'L'
 | 
						|
         CALL SLACPY( 'L', N, N, A, LDA, VL, LDVL )
 | 
						|
*
 | 
						|
*        Generate orthogonal matrix in VL
 | 
						|
*        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | 
						|
*
 | 
						|
         CALL SORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
 | 
						|
     $                LWORK-IWRK+1, IERR )
 | 
						|
*
 | 
						|
*        Perform QR iteration, accumulating Schur vectors in VL
 | 
						|
*        (Workspace: need N+1, prefer N+HSWORK (see comments) )
 | 
						|
*
 | 
						|
         IWRK = ITAU
 | 
						|
         CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
 | 
						|
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | 
						|
*
 | 
						|
         IF( WANTVR ) THEN
 | 
						|
*
 | 
						|
*           Want left and right eigenvectors
 | 
						|
*           Copy Schur vectors to VR
 | 
						|
*
 | 
						|
            SIDE = 'B'
 | 
						|
            CALL SLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE IF( WANTVR ) THEN
 | 
						|
*
 | 
						|
*        Want right eigenvectors
 | 
						|
*        Copy Householder vectors to VR
 | 
						|
*
 | 
						|
         SIDE = 'R'
 | 
						|
         CALL SLACPY( 'L', N, N, A, LDA, VR, LDVR )
 | 
						|
*
 | 
						|
*        Generate orthogonal matrix in VR
 | 
						|
*        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | 
						|
*
 | 
						|
         CALL SORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
 | 
						|
     $                LWORK-IWRK+1, IERR )
 | 
						|
*
 | 
						|
*        Perform QR iteration, accumulating Schur vectors in VR
 | 
						|
*        (Workspace: need N+1, prefer N+HSWORK (see comments) )
 | 
						|
*
 | 
						|
         IWRK = ITAU
 | 
						|
         CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
 | 
						|
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute eigenvalues only
 | 
						|
*        (Workspace: need N+1, prefer N+HSWORK (see comments) )
 | 
						|
*
 | 
						|
         IWRK = ITAU
 | 
						|
         CALL SHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
 | 
						|
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If INFO .NE. 0 from SHSEQR, then quit
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 )
 | 
						|
     $   GO TO 50
 | 
						|
*
 | 
						|
      IF( WANTVL .OR. WANTVR ) THEN
 | 
						|
*
 | 
						|
*        Compute left and/or right eigenvectors
 | 
						|
*        (Workspace: need 4*N)
 | 
						|
*
 | 
						|
         CALL STREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
 | 
						|
     $                N, NOUT, WORK( IWRK ), IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTVL ) THEN
 | 
						|
*
 | 
						|
*        Undo balancing of left eigenvectors
 | 
						|
*        (Workspace: need N)
 | 
						|
*
 | 
						|
         CALL SGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
 | 
						|
     $                IERR )
 | 
						|
*
 | 
						|
*        Normalize left eigenvectors and make largest component real
 | 
						|
*
 | 
						|
         DO 20 I = 1, N
 | 
						|
            IF( WI( I ).EQ.ZERO ) THEN
 | 
						|
               SCL = ONE / SNRM2( N, VL( 1, I ), 1 )
 | 
						|
               CALL SSCAL( N, SCL, VL( 1, I ), 1 )
 | 
						|
            ELSE IF( WI( I ).GT.ZERO ) THEN
 | 
						|
               SCL = ONE / SLAPY2( SNRM2( N, VL( 1, I ), 1 ),
 | 
						|
     $               SNRM2( N, VL( 1, I+1 ), 1 ) )
 | 
						|
               CALL SSCAL( N, SCL, VL( 1, I ), 1 )
 | 
						|
               CALL SSCAL( N, SCL, VL( 1, I+1 ), 1 )
 | 
						|
               DO 10 K = 1, N
 | 
						|
                  WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
 | 
						|
   10          CONTINUE
 | 
						|
               K = ISAMAX( N, WORK( IWRK ), 1 )
 | 
						|
               CALL SLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
 | 
						|
               CALL SROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
 | 
						|
               VL( K, I+1 ) = ZERO
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTVR ) THEN
 | 
						|
*
 | 
						|
*        Undo balancing of right eigenvectors
 | 
						|
*        (Workspace: need N)
 | 
						|
*
 | 
						|
         CALL SGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
 | 
						|
     $                IERR )
 | 
						|
*
 | 
						|
*        Normalize right eigenvectors and make largest component real
 | 
						|
*
 | 
						|
         DO 40 I = 1, N
 | 
						|
            IF( WI( I ).EQ.ZERO ) THEN
 | 
						|
               SCL = ONE / SNRM2( N, VR( 1, I ), 1 )
 | 
						|
               CALL SSCAL( N, SCL, VR( 1, I ), 1 )
 | 
						|
            ELSE IF( WI( I ).GT.ZERO ) THEN
 | 
						|
               SCL = ONE / SLAPY2( SNRM2( N, VR( 1, I ), 1 ),
 | 
						|
     $               SNRM2( N, VR( 1, I+1 ), 1 ) )
 | 
						|
               CALL SSCAL( N, SCL, VR( 1, I ), 1 )
 | 
						|
               CALL SSCAL( N, SCL, VR( 1, I+1 ), 1 )
 | 
						|
               DO 30 K = 1, N
 | 
						|
                  WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
 | 
						|
   30          CONTINUE
 | 
						|
               K = ISAMAX( N, WORK( IWRK ), 1 )
 | 
						|
               CALL SLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
 | 
						|
               CALL SROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
 | 
						|
               VR( K, I+1 ) = ZERO
 | 
						|
            END IF
 | 
						|
   40    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling if necessary
 | 
						|
*
 | 
						|
   50 CONTINUE
 | 
						|
      IF( SCALEA ) THEN
 | 
						|
         CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
 | 
						|
     $                MAX( N-INFO, 1 ), IERR )
 | 
						|
         CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
 | 
						|
     $                MAX( N-INFO, 1 ), IERR )
 | 
						|
         IF( INFO.GT.0 ) THEN
 | 
						|
            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
 | 
						|
     $                   IERR )
 | 
						|
            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
 | 
						|
     $                   IERR )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = MAXWRK
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGEEV
 | 
						|
*
 | 
						|
      END
 |