1131 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1131 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle_() continue;
 | 
						|
#define myceiling_(w) {ceil(w)}
 | 
						|
#define myhuge_(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* > \brief \b ZTFTTR copies a triangular matrix from the rectangular full packed format (TF) to the standard 
 | 
						|
full format (TR). */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download ZTFTTR + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztfttr.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztfttr.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztfttr.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE ZTFTTR( TRANSR, UPLO, N, ARF, A, LDA, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          TRANSR, UPLO */
 | 
						|
/*       INTEGER            INFO, N, LDA */
 | 
						|
/*       COMPLEX*16         A( 0: LDA-1, 0: * ), ARF( 0: * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > ZTFTTR copies a triangular matrix A from rectangular full packed */
 | 
						|
/* > format (TF) to standard full format (TR). */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] TRANSR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TRANSR is CHARACTER*1 */
 | 
						|
/* >          = 'N':  ARF is in Normal format; */
 | 
						|
/* >          = 'C':  ARF is in Conjugate-transpose format; */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >          = 'U':  A is upper triangular; */
 | 
						|
/* >          = 'L':  A is lower triangular. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] ARF */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ARF is COMPLEX*16 array, dimension ( N*(N+1)/2 ), */
 | 
						|
/* >          On entry, the upper or lower triangular matrix A stored in */
 | 
						|
/* >          RFP format. For a further discussion see Notes below. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX*16 array, dimension ( LDA, N ) */
 | 
						|
/* >          On exit, the triangular matrix A.  If UPLO = 'U', the */
 | 
						|
/* >          leading N-by-N upper triangular part of the array A contains */
 | 
						|
/* >          the upper triangular matrix, and the strictly lower */
 | 
						|
/* >          triangular part of A is not referenced.  If UPLO = 'L', the */
 | 
						|
/* >          leading N-by-N lower triangular part of the array A contains */
 | 
						|
/* >          the lower triangular matrix, and the strictly upper */
 | 
						|
/* >          triangular part of A is not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complex16OTHERcomputational */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  We first consider Standard Packed Format when N is even. */
 | 
						|
/* >  We give an example where N = 6. */
 | 
						|
/* > */
 | 
						|
/* >      AP is Upper             AP is Lower */
 | 
						|
/* > */
 | 
						|
/* >   00 01 02 03 04 05       00 */
 | 
						|
/* >      11 12 13 14 15       10 11 */
 | 
						|
/* >         22 23 24 25       20 21 22 */
 | 
						|
/* >            33 34 35       30 31 32 33 */
 | 
						|
/* >               44 45       40 41 42 43 44 */
 | 
						|
/* >                  55       50 51 52 53 54 55 */
 | 
						|
/* > */
 | 
						|
/* > */
 | 
						|
/* >  Let TRANSR = 'N'. RFP holds AP as follows: */
 | 
						|
/* >  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
 | 
						|
/* >  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
 | 
						|
/* >  conjugate-transpose of the first three columns of AP upper. */
 | 
						|
/* >  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
 | 
						|
/* >  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
 | 
						|
/* >  conjugate-transpose of the last three columns of AP lower. */
 | 
						|
/* >  To denote conjugate we place -- above the element. This covers the */
 | 
						|
/* >  case N even and TRANSR = 'N'. */
 | 
						|
/* > */
 | 
						|
/* >         RFP A                   RFP A */
 | 
						|
/* > */
 | 
						|
/* >                                -- -- -- */
 | 
						|
/* >        03 04 05                33 43 53 */
 | 
						|
/* >                                   -- -- */
 | 
						|
/* >        13 14 15                00 44 54 */
 | 
						|
/* >                                      -- */
 | 
						|
/* >        23 24 25                10 11 55 */
 | 
						|
/* > */
 | 
						|
/* >        33 34 35                20 21 22 */
 | 
						|
/* >        -- */
 | 
						|
/* >        00 44 45                30 31 32 */
 | 
						|
/* >        -- -- */
 | 
						|
/* >        01 11 55                40 41 42 */
 | 
						|
/* >        -- -- -- */
 | 
						|
/* >        02 12 22                50 51 52 */
 | 
						|
/* > */
 | 
						|
/* >  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
 | 
						|
/* >  transpose of RFP A above. One therefore gets: */
 | 
						|
/* > */
 | 
						|
/* > */
 | 
						|
/* >           RFP A                   RFP A */
 | 
						|
/* > */
 | 
						|
/* >     -- -- -- --                -- -- -- -- -- -- */
 | 
						|
/* >     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
 | 
						|
/* >     -- -- -- -- --                -- -- -- -- -- */
 | 
						|
/* >     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
 | 
						|
/* >     -- -- -- -- -- --                -- -- -- -- */
 | 
						|
/* >     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
 | 
						|
/* > */
 | 
						|
/* > */
 | 
						|
/* >  We next  consider Standard Packed Format when N is odd. */
 | 
						|
/* >  We give an example where N = 5. */
 | 
						|
/* > */
 | 
						|
/* >     AP is Upper                 AP is Lower */
 | 
						|
/* > */
 | 
						|
/* >   00 01 02 03 04              00 */
 | 
						|
/* >      11 12 13 14              10 11 */
 | 
						|
/* >         22 23 24              20 21 22 */
 | 
						|
/* >            33 34              30 31 32 33 */
 | 
						|
/* >               44              40 41 42 43 44 */
 | 
						|
/* > */
 | 
						|
/* > */
 | 
						|
/* >  Let TRANSR = 'N'. RFP holds AP as follows: */
 | 
						|
/* >  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
 | 
						|
/* >  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
 | 
						|
/* >  conjugate-transpose of the first two   columns of AP upper. */
 | 
						|
/* >  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
 | 
						|
/* >  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
 | 
						|
/* >  conjugate-transpose of the last two   columns of AP lower. */
 | 
						|
/* >  To denote conjugate we place -- above the element. This covers the */
 | 
						|
/* >  case N odd  and TRANSR = 'N'. */
 | 
						|
/* > */
 | 
						|
/* >         RFP A                   RFP A */
 | 
						|
/* > */
 | 
						|
/* >                                   -- -- */
 | 
						|
/* >        02 03 04                00 33 43 */
 | 
						|
/* >                                      -- */
 | 
						|
/* >        12 13 14                10 11 44 */
 | 
						|
/* > */
 | 
						|
/* >        22 23 24                20 21 22 */
 | 
						|
/* >        -- */
 | 
						|
/* >        00 33 34                30 31 32 */
 | 
						|
/* >        -- -- */
 | 
						|
/* >        01 11 44                40 41 42 */
 | 
						|
/* > */
 | 
						|
/* >  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
 | 
						|
/* >  transpose of RFP A above. One therefore gets: */
 | 
						|
/* > */
 | 
						|
/* > */
 | 
						|
/* >           RFP A                   RFP A */
 | 
						|
/* > */
 | 
						|
/* >     -- -- --                   -- -- -- -- -- -- */
 | 
						|
/* >     02 12 22 00 01             00 10 20 30 40 50 */
 | 
						|
/* >     -- -- -- --                   -- -- -- -- -- */
 | 
						|
/* >     03 13 23 33 11             33 11 21 31 41 51 */
 | 
						|
/* >     -- -- -- -- --                   -- -- -- -- */
 | 
						|
/* >     04 14 24 34 44             43 44 22 32 42 52 */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void ztfttr_(char *transr, char *uplo, integer *n, 
 | 
						|
	doublecomplex *arf, doublecomplex *a, integer *lda, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
 | 
						|
    doublecomplex z__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer np1x2, i__, j, k, l;
 | 
						|
    logical normaltransr;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    logical lower;
 | 
						|
    integer n1, n2, ij, nt;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    logical nisodd;
 | 
						|
    integer nx2;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda - 1 - 0 + 1;
 | 
						|
    a_offset = 0 + a_dim1 * 0;
 | 
						|
    a -= a_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    normaltransr = lsame_(transr, "N");
 | 
						|
    lower = lsame_(uplo, "L");
 | 
						|
    if (! normaltransr && ! lsame_(transr, "C")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! lower && ! lsame_(uplo, "U")) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -6;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("ZTFTTR", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n <= 1) {
 | 
						|
	if (*n == 1) {
 | 
						|
	    if (normaltransr) {
 | 
						|
		a[0].r = arf[0].r, a[0].i = arf[0].i;
 | 
						|
	    } else {
 | 
						|
		d_cnjg(&z__1, arf);
 | 
						|
		a[0].r = z__1.r, a[0].i = z__1.i;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Size of array ARF(1:2,0:nt-1) */
 | 
						|
 | 
						|
    nt = *n * (*n + 1) / 2;
 | 
						|
 | 
						|
/*     set N1 and N2 depending on LOWER: for N even N1=N2=K */
 | 
						|
 | 
						|
    if (lower) {
 | 
						|
	n2 = *n / 2;
 | 
						|
	n1 = *n - n2;
 | 
						|
    } else {
 | 
						|
	n1 = *n / 2;
 | 
						|
	n2 = *n - n1;
 | 
						|
    }
 | 
						|
 | 
						|
/*     If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2. */
 | 
						|
/*     If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is */
 | 
						|
/*     N--by--(N+1)/2. */
 | 
						|
 | 
						|
    if (*n % 2 == 0) {
 | 
						|
	k = *n / 2;
 | 
						|
	nisodd = FALSE_;
 | 
						|
	if (! lower) {
 | 
						|
	    np1x2 = *n + *n + 2;
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	nisodd = TRUE_;
 | 
						|
	if (! lower) {
 | 
						|
	    nx2 = *n + *n;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (nisodd) {
 | 
						|
 | 
						|
/*        N is odd */
 | 
						|
 | 
						|
	if (normaltransr) {
 | 
						|
 | 
						|
/*           N is odd and TRANSR = 'N' */
 | 
						|
 | 
						|
	    if (lower) {
 | 
						|
 | 
						|
/*             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
 | 
						|
/*             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
 | 
						|
/*             T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n */
 | 
						|
 | 
						|
		ij = 0;
 | 
						|
		i__1 = n2;
 | 
						|
		for (j = 0; j <= i__1; ++j) {
 | 
						|
		    i__2 = n2 + j;
 | 
						|
		    for (i__ = n1; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = n2 + j + i__ * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    for (i__ = j; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = i__ + j * a_dim1;
 | 
						|
			i__4 = ij;
 | 
						|
			a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
 | 
						|
/*             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
 | 
						|
/*             T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n */
 | 
						|
 | 
						|
		ij = nt - *n;
 | 
						|
		i__1 = n1;
 | 
						|
		for (j = *n - 1; j >= i__1; --j) {
 | 
						|
		    i__2 = j;
 | 
						|
		    for (i__ = 0; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = i__ + j * a_dim1;
 | 
						|
			i__4 = ij;
 | 
						|
			a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    i__2 = n1 - 1;
 | 
						|
		    for (l = j - n1; l <= i__2; ++l) {
 | 
						|
			i__3 = j - n1 + l * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    ij -= nx2;
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           N is odd and TRANSR = 'C' */
 | 
						|
 | 
						|
	    if (lower) {
 | 
						|
 | 
						|
/*              SRPA for LOWER, TRANSPOSE and N is odd */
 | 
						|
/*              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
 | 
						|
/*              T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1 */
 | 
						|
 | 
						|
		ij = 0;
 | 
						|
		i__1 = n2 - 1;
 | 
						|
		for (j = 0; j <= i__1; ++j) {
 | 
						|
		    i__2 = j;
 | 
						|
		    for (i__ = 0; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = j + i__ * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    for (i__ = n1 + j; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = i__ + (n1 + j) * a_dim1;
 | 
						|
			i__4 = ij;
 | 
						|
			a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		i__1 = *n - 1;
 | 
						|
		for (j = n2; j <= i__1; ++j) {
 | 
						|
		    i__2 = n1 - 1;
 | 
						|
		    for (i__ = 0; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = j + i__ * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              SRPA for UPPER, TRANSPOSE and N is odd */
 | 
						|
/*              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
 | 
						|
/*              T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda = n2 */
 | 
						|
 | 
						|
		ij = 0;
 | 
						|
		i__1 = n1;
 | 
						|
		for (j = 0; j <= i__1; ++j) {
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    for (i__ = n1; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = j + i__ * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		i__1 = n1 - 1;
 | 
						|
		for (j = 0; j <= i__1; ++j) {
 | 
						|
		    i__2 = j;
 | 
						|
		    for (i__ = 0; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = i__ + j * a_dim1;
 | 
						|
			i__4 = ij;
 | 
						|
			a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    for (l = n2 + j; l <= i__2; ++l) {
 | 
						|
			i__3 = n2 + j + l * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        N is even */
 | 
						|
 | 
						|
	if (normaltransr) {
 | 
						|
 | 
						|
/*           N is even and TRANSR = 'N' */
 | 
						|
 | 
						|
	    if (lower) {
 | 
						|
 | 
						|
/*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
 | 
						|
/*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
 | 
						|
/*              T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1 */
 | 
						|
 | 
						|
		ij = 0;
 | 
						|
		i__1 = k - 1;
 | 
						|
		for (j = 0; j <= i__1; ++j) {
 | 
						|
		    i__2 = k + j;
 | 
						|
		    for (i__ = k; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = k + j + i__ * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    for (i__ = j; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = i__ + j * a_dim1;
 | 
						|
			i__4 = ij;
 | 
						|
			a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
 | 
						|
/*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0) */
 | 
						|
/*              T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1 */
 | 
						|
 | 
						|
		ij = nt - *n - 1;
 | 
						|
		i__1 = k;
 | 
						|
		for (j = *n - 1; j >= i__1; --j) {
 | 
						|
		    i__2 = j;
 | 
						|
		    for (i__ = 0; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = i__ + j * a_dim1;
 | 
						|
			i__4 = ij;
 | 
						|
			a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    i__2 = k - 1;
 | 
						|
		    for (l = j - k; l <= i__2; ++l) {
 | 
						|
			i__3 = j - k + l * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    ij -= np1x2;
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           N is even and TRANSR = 'C' */
 | 
						|
 | 
						|
	    if (lower) {
 | 
						|
 | 
						|
/*              SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B) */
 | 
						|
/*              T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) : */
 | 
						|
/*              T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k */
 | 
						|
 | 
						|
		ij = 0;
 | 
						|
		j = k;
 | 
						|
		i__1 = *n - 1;
 | 
						|
		for (i__ = k; i__ <= i__1; ++i__) {
 | 
						|
		    i__2 = i__ + j * a_dim1;
 | 
						|
		    i__3 = ij;
 | 
						|
		    a[i__2].r = arf[i__3].r, a[i__2].i = arf[i__3].i;
 | 
						|
		    ++ij;
 | 
						|
		}
 | 
						|
		i__1 = k - 2;
 | 
						|
		for (j = 0; j <= i__1; ++j) {
 | 
						|
		    i__2 = j;
 | 
						|
		    for (i__ = 0; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = j + i__ * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    for (i__ = k + 1 + j; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = i__ + (k + 1 + j) * a_dim1;
 | 
						|
			i__4 = ij;
 | 
						|
			a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		i__1 = *n - 1;
 | 
						|
		for (j = k - 1; j <= i__1; ++j) {
 | 
						|
		    i__2 = k - 1;
 | 
						|
		    for (i__ = 0; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = j + i__ * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B) */
 | 
						|
/*              T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0) */
 | 
						|
/*              T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k */
 | 
						|
 | 
						|
		ij = 0;
 | 
						|
		i__1 = k;
 | 
						|
		for (j = 0; j <= i__1; ++j) {
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    for (i__ = k; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = j + i__ * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		i__1 = k - 2;
 | 
						|
		for (j = 0; j <= i__1; ++j) {
 | 
						|
		    i__2 = j;
 | 
						|
		    for (i__ = 0; i__ <= i__2; ++i__) {
 | 
						|
			i__3 = i__ + j * a_dim1;
 | 
						|
			i__4 = ij;
 | 
						|
			a[i__3].r = arf[i__4].r, a[i__3].i = arf[i__4].i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		    i__2 = *n - 1;
 | 
						|
		    for (l = k + 1 + j; l <= i__2; ++l) {
 | 
						|
			i__3 = k + 1 + j + l * a_dim1;
 | 
						|
			d_cnjg(&z__1, &arf[ij]);
 | 
						|
			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | 
						|
			++ij;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
/*              Note that here J = K-1 */
 | 
						|
 | 
						|
		i__1 = j;
 | 
						|
		for (i__ = 0; i__ <= i__1; ++i__) {
 | 
						|
		    i__2 = i__ + j * a_dim1;
 | 
						|
		    i__3 = ij;
 | 
						|
		    a[i__2].r = arf[i__3].r, a[i__2].i = arf[i__3].i;
 | 
						|
		    ++ij;
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of ZTFTTR */
 | 
						|
 | 
						|
} /* ztfttr_ */
 | 
						|
 |