1045 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1045 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
static integer c__2 = 2;
 | 
						|
 | 
						|
/* > \brief \b ZHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded
 | 
						|
 Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm). */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download ZHETRF_RK + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetrf_
 | 
						|
rk.f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetrf_
 | 
						|
rk.f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetrf_
 | 
						|
rk.f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE ZHETRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, */
 | 
						|
/*                             INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          UPLO */
 | 
						|
/*       INTEGER            INFO, LDA, LWORK, N */
 | 
						|
/*       INTEGER            IPIV( * ) */
 | 
						|
/*       COMPLEX*16         A( LDA, * ), E ( * ), WORK( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > ZHETRF_RK computes the factorization of a complex Hermitian matrix A */
 | 
						|
/* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
 | 
						|
/* > */
 | 
						|
/* >    A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), */
 | 
						|
/* > */
 | 
						|
/* > where U (or L) is unit upper (or lower) triangular matrix, */
 | 
						|
/* > U**H (or L**H) is the conjugate of U (or L), P is a permutation */
 | 
						|
/* > matrix, P**T is the transpose of P, and D is Hermitian and block */
 | 
						|
/* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
 | 
						|
/* > */
 | 
						|
/* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
 | 
						|
/* > For more information see Further Details section. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >          Specifies whether the upper or lower triangular part of the */
 | 
						|
/* >          Hermitian matrix A is stored: */
 | 
						|
/* >          = 'U':  Upper triangular */
 | 
						|
/* >          = 'L':  Lower triangular */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX*16 array, dimension (LDA,N) */
 | 
						|
/* >          On entry, the Hermitian matrix A. */
 | 
						|
/* >            If UPLO = 'U': the leading N-by-N upper triangular part */
 | 
						|
/* >            of A contains the upper triangular part of the matrix A, */
 | 
						|
/* >            and the strictly lower triangular part of A is not */
 | 
						|
/* >            referenced. */
 | 
						|
/* > */
 | 
						|
/* >            If UPLO = 'L': the leading N-by-N lower triangular part */
 | 
						|
/* >            of A contains the lower triangular part of the matrix A, */
 | 
						|
/* >            and the strictly upper triangular part of A is not */
 | 
						|
/* >            referenced. */
 | 
						|
/* > */
 | 
						|
/* >          On exit, contains: */
 | 
						|
/* >            a) ONLY diagonal elements of the Hermitian block diagonal */
 | 
						|
/* >               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
 | 
						|
/* >               (superdiagonal (or subdiagonal) elements of D */
 | 
						|
/* >                are stored on exit in array E), and */
 | 
						|
/* >            b) If UPLO = 'U': factor U in the superdiagonal part of A. */
 | 
						|
/* >               If UPLO = 'L': factor L in the subdiagonal part of A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] E */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          E is COMPLEX*16 array, dimension (N) */
 | 
						|
/* >          On exit, contains the superdiagonal (or subdiagonal) */
 | 
						|
/* >          elements of the Hermitian block diagonal matrix D */
 | 
						|
/* >          with 1-by-1 or 2-by-2 diagonal blocks, where */
 | 
						|
/* >          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
 | 
						|
/* >          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
 | 
						|
/* > */
 | 
						|
/* >          NOTE: For 1-by-1 diagonal block D(k), where */
 | 
						|
/* >          1 <= k <= N, the element E(k) is set to 0 in both */
 | 
						|
/* >          UPLO = 'U' or UPLO = 'L' cases. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IPIV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IPIV is INTEGER array, dimension (N) */
 | 
						|
/* >          IPIV describes the permutation matrix P in the factorization */
 | 
						|
/* >          of matrix A as follows. The absolute value of IPIV(k) */
 | 
						|
/* >          represents the index of row and column that were */
 | 
						|
/* >          interchanged with the k-th row and column. The value of UPLO */
 | 
						|
/* >          describes the order in which the interchanges were applied. */
 | 
						|
/* >          Also, the sign of IPIV represents the block structure of */
 | 
						|
/* >          the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
 | 
						|
/* >          diagonal blocks which correspond to 1 or 2 interchanges */
 | 
						|
/* >          at each factorization step. For more info see Further */
 | 
						|
/* >          Details section. */
 | 
						|
/* > */
 | 
						|
/* >          If UPLO = 'U', */
 | 
						|
/* >          ( in factorization order, k decreases from N to 1 ): */
 | 
						|
/* >            a) A single positive entry IPIV(k) > 0 means: */
 | 
						|
/* >               D(k,k) is a 1-by-1 diagonal block. */
 | 
						|
/* >               If IPIV(k) != k, rows and columns k and IPIV(k) were */
 | 
						|
/* >               interchanged in the matrix A(1:N,1:N); */
 | 
						|
/* >               If IPIV(k) = k, no interchange occurred. */
 | 
						|
/* > */
 | 
						|
/* >            b) A pair of consecutive negative entries */
 | 
						|
/* >               IPIV(k) < 0 and IPIV(k-1) < 0 means: */
 | 
						|
/* >               D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
 | 
						|
/* >               (NOTE: negative entries in IPIV appear ONLY in pairs). */
 | 
						|
/* >               1) If -IPIV(k) != k, rows and columns */
 | 
						|
/* >                  k and -IPIV(k) were interchanged */
 | 
						|
/* >                  in the matrix A(1:N,1:N). */
 | 
						|
/* >                  If -IPIV(k) = k, no interchange occurred. */
 | 
						|
/* >               2) If -IPIV(k-1) != k-1, rows and columns */
 | 
						|
/* >                  k-1 and -IPIV(k-1) were interchanged */
 | 
						|
/* >                  in the matrix A(1:N,1:N). */
 | 
						|
/* >                  If -IPIV(k-1) = k-1, no interchange occurred. */
 | 
						|
/* > */
 | 
						|
/* >            c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
 | 
						|
/* > */
 | 
						|
/* >            d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
 | 
						|
/* > */
 | 
						|
/* >          If UPLO = 'L', */
 | 
						|
/* >          ( in factorization order, k increases from 1 to N ): */
 | 
						|
/* >            a) A single positive entry IPIV(k) > 0 means: */
 | 
						|
/* >               D(k,k) is a 1-by-1 diagonal block. */
 | 
						|
/* >               If IPIV(k) != k, rows and columns k and IPIV(k) were */
 | 
						|
/* >               interchanged in the matrix A(1:N,1:N). */
 | 
						|
/* >               If IPIV(k) = k, no interchange occurred. */
 | 
						|
/* > */
 | 
						|
/* >            b) A pair of consecutive negative entries */
 | 
						|
/* >               IPIV(k) < 0 and IPIV(k+1) < 0 means: */
 | 
						|
/* >               D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
 | 
						|
/* >               (NOTE: negative entries in IPIV appear ONLY in pairs). */
 | 
						|
/* >               1) If -IPIV(k) != k, rows and columns */
 | 
						|
/* >                  k and -IPIV(k) were interchanged */
 | 
						|
/* >                  in the matrix A(1:N,1:N). */
 | 
						|
/* >                  If -IPIV(k) = k, no interchange occurred. */
 | 
						|
/* >               2) If -IPIV(k+1) != k+1, rows and columns */
 | 
						|
/* >                  k-1 and -IPIV(k-1) were interchanged */
 | 
						|
/* >                  in the matrix A(1:N,1:N). */
 | 
						|
/* >                  If -IPIV(k+1) = k+1, no interchange occurred. */
 | 
						|
/* > */
 | 
						|
/* >            c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
 | 
						|
/* > */
 | 
						|
/* >            d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is COMPLEX*16 array, dimension ( MAX(1,LWORK) ). */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The length of WORK.  LWORK >=1.  For best performance */
 | 
						|
/* >          LWORK >= N*NB, where NB is the block size returned */
 | 
						|
/* >          by ILAENV. */
 | 
						|
/* > */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; */
 | 
						|
/* >          the routine only calculates the optimal size of the WORK */
 | 
						|
/* >          array, returns this value as the first entry of the WORK */
 | 
						|
/* >          array, and no error message related to LWORK is issued */
 | 
						|
/* >          by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0: successful exit */
 | 
						|
/* > */
 | 
						|
/* >          < 0: If INFO = -k, the k-th argument had an illegal value */
 | 
						|
/* > */
 | 
						|
/* >          > 0: If INFO = k, the matrix A is singular, because: */
 | 
						|
/* >                 If UPLO = 'U': column k in the upper */
 | 
						|
/* >                 triangular part of A contains all zeros. */
 | 
						|
/* >                 If UPLO = 'L': column k in the lower */
 | 
						|
/* >                 triangular part of A contains all zeros. */
 | 
						|
/* > */
 | 
						|
/* >               Therefore D(k,k) is exactly zero, and superdiagonal */
 | 
						|
/* >               elements of column k of U (or subdiagonal elements of */
 | 
						|
/* >               column k of L ) are all zeros. The factorization has */
 | 
						|
/* >               been completed, but the block diagonal matrix D is */
 | 
						|
/* >               exactly singular, and division by zero will occur if */
 | 
						|
/* >               it is used to solve a system of equations. */
 | 
						|
/* > */
 | 
						|
/* >               NOTE: INFO only stores the first occurrence of */
 | 
						|
/* >               a singularity, any subsequent occurrence of singularity */
 | 
						|
/* >               is not stored in INFO even though the factorization */
 | 
						|
/* >               always completes. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complex16HEcomputational */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > TODO: put correct description */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/* > \par Contributors: */
 | 
						|
/*  ================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  December 2016,  Igor Kozachenko, */
 | 
						|
/* >                  Computer Science Division, */
 | 
						|
/* >                  University of California, Berkeley */
 | 
						|
/* > */
 | 
						|
/* >  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
 | 
						|
/* >                  School of Mathematics, */
 | 
						|
/* >                  University of Manchester */
 | 
						|
/* > */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void zhetrf_rk_(char *uplo, integer *n, doublecomplex *a, 
 | 
						|
	integer *lda, doublecomplex *e, integer *ipiv, doublecomplex *work, 
 | 
						|
	integer *lwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, k;
 | 
						|
    extern /* Subroutine */ void zhetf2_rk_(char *, integer *, doublecomplex *
 | 
						|
	    , integer *, doublecomplex *, integer *, integer *);
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer nbmin, iinfo;
 | 
						|
    extern /* Subroutine */ void zlahef_rk_(char *, integer *, integer *, 
 | 
						|
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
 | 
						|
	     doublecomplex *, integer *, integer *);
 | 
						|
    logical upper;
 | 
						|
    extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *, 
 | 
						|
	    doublecomplex *, integer *);
 | 
						|
    integer kb, nb, ip;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *, ftnlen, ftnlen);
 | 
						|
    integer ldwork, lwkopt;
 | 
						|
    logical lquery;
 | 
						|
    integer iws;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --e;
 | 
						|
    --ipiv;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    upper = lsame_(uplo, "U");
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    if (! upper && ! lsame_(uplo, "L")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*lwork < 1 && ! lquery) {
 | 
						|
	*info = -8;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
 | 
						|
/*        Determine the block size */
 | 
						|
 | 
						|
	nb = ilaenv_(&c__1, "ZHETRF_RK", uplo, n, &c_n1, &c_n1, &c_n1, (
 | 
						|
		ftnlen)9, (ftnlen)1);
 | 
						|
	lwkopt = *n * nb;
 | 
						|
	work[1].r = (doublereal) lwkopt, work[1].i = 0.;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("ZHETRF_RK", &i__1, (ftnlen)9);
 | 
						|
	return;
 | 
						|
    } else if (lquery) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    nbmin = 2;
 | 
						|
    ldwork = *n;
 | 
						|
    if (nb > 1 && nb < *n) {
 | 
						|
	iws = ldwork * nb;
 | 
						|
	if (*lwork < iws) {
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = *lwork / ldwork;
 | 
						|
	    nb = f2cmax(i__1,1);
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = 2, i__2 = ilaenv_(&c__2, "ZHETRF_RK", uplo, n, &c_n1, &
 | 
						|
		    c_n1, &c_n1, (ftnlen)9, (ftnlen)1);
 | 
						|
	    nbmin = f2cmax(i__1,i__2);
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	iws = 1;
 | 
						|
    }
 | 
						|
    if (nb < nbmin) {
 | 
						|
	nb = *n;
 | 
						|
    }
 | 
						|
 | 
						|
    if (upper) {
 | 
						|
 | 
						|
/*        Factorize A as U*D*U**T using the upper triangle of A */
 | 
						|
 | 
						|
/*        K is the main loop index, decreasing from N to 1 in steps of */
 | 
						|
/*        KB, where KB is the number of columns factorized by ZLAHEF_RK; */
 | 
						|
/*        KB is either NB or NB-1, or K for the last block */
 | 
						|
 | 
						|
	k = *n;
 | 
						|
L10:
 | 
						|
 | 
						|
/*        If K < 1, exit from loop */
 | 
						|
 | 
						|
	if (k < 1) {
 | 
						|
	    goto L15;
 | 
						|
	}
 | 
						|
 | 
						|
	if (k > nb) {
 | 
						|
 | 
						|
/*           Factorize columns k-kb+1:k of A and use blocked code to */
 | 
						|
/*           update columns 1:k-kb */
 | 
						|
 | 
						|
	    zlahef_rk_(uplo, &k, &nb, &kb, &a[a_offset], lda, &e[1], &ipiv[1]
 | 
						|
		    , &work[1], &ldwork, &iinfo);
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Use unblocked code to factorize columns 1:k of A */
 | 
						|
 | 
						|
	    zhetf2_rk_(uplo, &k, &a[a_offset], lda, &e[1], &ipiv[1], &iinfo);
 | 
						|
	    kb = k;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Set INFO on the first occurrence of a zero pivot */
 | 
						|
 | 
						|
	if (*info == 0 && iinfo > 0) {
 | 
						|
	    *info = iinfo;
 | 
						|
	}
 | 
						|
 | 
						|
/*        No need to adjust IPIV */
 | 
						|
 | 
						|
 | 
						|
/*        Apply permutations to the leading panel 1:k-1 */
 | 
						|
 | 
						|
/*        Read IPIV from the last block factored, i.e. */
 | 
						|
/*        indices  k-kb+1:k and apply row permutations to the */
 | 
						|
/*        last k+1 colunms k+1:N after that block */
 | 
						|
/*        (We can do the simple loop over IPIV with decrement -1, */
 | 
						|
/*        since the ABS value of IPIV( I ) represents the row index */
 | 
						|
/*        of the interchange with row i in both 1x1 and 2x2 pivot cases) */
 | 
						|
 | 
						|
	if (k < *n) {
 | 
						|
	    i__1 = k - kb + 1;
 | 
						|
	    for (i__ = k; i__ >= i__1; --i__) {
 | 
						|
		ip = (i__2 = ipiv[i__], abs(i__2));
 | 
						|
		if (ip != i__) {
 | 
						|
		    i__2 = *n - k;
 | 
						|
		    zswap_(&i__2, &a[i__ + (k + 1) * a_dim1], lda, &a[ip + (k 
 | 
						|
			    + 1) * a_dim1], lda);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Decrease K and return to the start of the main loop */
 | 
						|
 | 
						|
	k -= kb;
 | 
						|
	goto L10;
 | 
						|
 | 
						|
/*        This label is the exit from main loop over K decreasing */
 | 
						|
/*        from N to 1 in steps of KB */
 | 
						|
 | 
						|
L15:
 | 
						|
 | 
						|
	;
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Factorize A as L*D*L**T using the lower triangle of A */
 | 
						|
 | 
						|
/*        K is the main loop index, increasing from 1 to N in steps of */
 | 
						|
/*        KB, where KB is the number of columns factorized by ZLAHEF_RK; */
 | 
						|
/*        KB is either NB or NB-1, or N-K+1 for the last block */
 | 
						|
 | 
						|
	k = 1;
 | 
						|
L20:
 | 
						|
 | 
						|
/*        If K > N, exit from loop */
 | 
						|
 | 
						|
	if (k > *n) {
 | 
						|
	    goto L35;
 | 
						|
	}
 | 
						|
 | 
						|
	if (k <= *n - nb) {
 | 
						|
 | 
						|
/*           Factorize columns k:k+kb-1 of A and use blocked code to */
 | 
						|
/*           update columns k+kb:n */
 | 
						|
 | 
						|
	    i__1 = *n - k + 1;
 | 
						|
	    zlahef_rk_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &e[k],
 | 
						|
		     &ipiv[k], &work[1], &ldwork, &iinfo);
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Use unblocked code to factorize columns k:n of A */
 | 
						|
 | 
						|
	    i__1 = *n - k + 1;
 | 
						|
	    zhetf2_rk_(uplo, &i__1, &a[k + k * a_dim1], lda, &e[k], &ipiv[k],
 | 
						|
		     &iinfo);
 | 
						|
	    kb = *n - k + 1;
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
/*        Set INFO on the first occurrence of a zero pivot */
 | 
						|
 | 
						|
	if (*info == 0 && iinfo > 0) {
 | 
						|
	    *info = iinfo + k - 1;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Adjust IPIV */
 | 
						|
 | 
						|
	i__1 = k + kb - 1;
 | 
						|
	for (i__ = k; i__ <= i__1; ++i__) {
 | 
						|
	    if (ipiv[i__] > 0) {
 | 
						|
		ipiv[i__] = ipiv[i__] + k - 1;
 | 
						|
	    } else {
 | 
						|
		ipiv[i__] = ipiv[i__] - k + 1;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Apply permutations to the leading panel 1:k-1 */
 | 
						|
 | 
						|
/*        Read IPIV from the last block factored, i.e. */
 | 
						|
/*        indices  k:k+kb-1 and apply row permutations to the */
 | 
						|
/*        first k-1 colunms 1:k-1 before that block */
 | 
						|
/*        (We can do the simple loop over IPIV with increment 1, */
 | 
						|
/*        since the ABS value of IPIV( I ) represents the row index */
 | 
						|
/*        of the interchange with row i in both 1x1 and 2x2 pivot cases) */
 | 
						|
 | 
						|
	if (k > 1) {
 | 
						|
	    i__1 = k + kb - 1;
 | 
						|
	    for (i__ = k; i__ <= i__1; ++i__) {
 | 
						|
		ip = (i__2 = ipiv[i__], abs(i__2));
 | 
						|
		if (ip != i__) {
 | 
						|
		    i__2 = k - 1;
 | 
						|
		    zswap_(&i__2, &a[i__ + a_dim1], lda, &a[ip + a_dim1], lda)
 | 
						|
			    ;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Increase K and return to the start of the main loop */
 | 
						|
 | 
						|
	k += kb;
 | 
						|
	goto L20;
 | 
						|
 | 
						|
/*        This label is the exit from main loop over K increasing */
 | 
						|
/*        from 1 to N in steps of KB */
 | 
						|
 | 
						|
L35:
 | 
						|
 | 
						|
/*     End Lower */
 | 
						|
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
    work[1].r = (doublereal) lwkopt, work[1].i = 0.;
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of ZHETRF_RK */
 | 
						|
 | 
						|
} /* zhetrf_rk__ */
 | 
						|
 |