1149 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1149 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			Fortran
		
	
	
	
!> \brief \b ZGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
 | 
						|
!
 | 
						|
!  =========== DOCUMENTATION ===========
 | 
						|
!
 | 
						|
!  Definition:
 | 
						|
!  ===========
 | 
						|
!
 | 
						|
!      SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF,  WHTSVD,   &
 | 
						|
!                         M, N, X, LDX, Y, LDY, NRNK, TOL,   &
 | 
						|
!                         K, EIGS, Z, LDZ, RES, B,    LDB,   &
 | 
						|
!                         W, LDW,  S, LDS, ZWORK,  LZWORK,   &
 | 
						|
!                         RWORK, LRWORK, IWORK, LIWORK, INFO )
 | 
						|
!......
 | 
						|
!      USE                   iso_fortran_env
 | 
						|
!      IMPLICIT NONE
 | 
						|
!      INTEGER, PARAMETER :: WP = real64
 | 
						|
! 
 | 
						|
!......
 | 
						|
!      Scalar arguments
 | 
						|
!      CHARACTER, INTENT(IN)   :: JOBS,   JOBZ,  JOBR,  JOBF
 | 
						|
!      INTEGER,   INTENT(IN)   :: WHTSVD, M, N,   LDX,  LDY, &
 | 
						|
!                                 NRNK, LDZ, LDB, LDW,  LDS, &
 | 
						|
!                                 LIWORK, LRWORK, LZWORK
 | 
						|
!      INTEGER,       INTENT(OUT)  :: K, INFO
 | 
						|
!      REAL(KIND=WP), INTENT(IN)   ::    TOL
 | 
						|
!      Array arguments
 | 
						|
!      COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
 | 
						|
!      COMPLEX(KIND=WP), INTENT(OUT)   :: Z(LDZ,*), B(LDB,*), &
 | 
						|
!                                         W(LDW,*), S(LDS,*)
 | 
						|
!      COMPLEX(KIND=WP), INTENT(OUT)   :: EIGS(*)
 | 
						|
!      COMPLEX(KIND=WP), INTENT(OUT)   :: ZWORK(*)
 | 
						|
!      REAL(KIND=WP),    INTENT(OUT)   :: RES(*)
 | 
						|
!      REAL(KIND=WP),    INTENT(OUT)   :: RWORK(*)
 | 
						|
!      INTEGER,          INTENT(OUT)   :: IWORK(*)
 | 
						|
!
 | 
						|
!............................................................
 | 
						|
!>    \par Purpose:
 | 
						|
!     =============
 | 
						|
!>    \verbatim
 | 
						|
!>    ZGEDMD computes the Dynamic Mode Decomposition (DMD) for
 | 
						|
!>    a pair of data snapshot matrices. For the input matrices
 | 
						|
!>    X and Y such that Y = A*X with an unaccessible matrix
 | 
						|
!>    A, ZGEDMD computes a certain number of Ritz pairs of A using
 | 
						|
!>    the standard Rayleigh-Ritz extraction from a subspace of
 | 
						|
!>    range(X) that is determined using the leading left singular
 | 
						|
!>    vectors of X. Optionally, ZGEDMD returns the residuals
 | 
						|
!>    of the computed Ritz pairs, the information needed for
 | 
						|
!>    a refinement of the Ritz vectors, or the eigenvectors of
 | 
						|
!>    the Exact DMD.
 | 
						|
!>    For further details see the references listed
 | 
						|
!>    below. For more details of the implementation see [3].
 | 
						|
!>    \endverbatim
 | 
						|
!............................................................
 | 
						|
!>    \par References:
 | 
						|
!     ================
 | 
						|
!>    \verbatim
 | 
						|
!>    [1] P. Schmid: Dynamic mode decomposition of numerical
 | 
						|
!>        and experimental data,
 | 
						|
!>        Journal of Fluid Mechanics 656, 5-28, 2010.
 | 
						|
!>    [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
 | 
						|
!>        decompositions: analysis and enhancements,
 | 
						|
!>        SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
 | 
						|
!>    [3] Z. Drmac: A LAPACK implementation of the Dynamic
 | 
						|
!>        Mode Decomposition I. Technical report. AIMDyn Inc.
 | 
						|
!>        and LAPACK Working Note 298.
 | 
						|
!>    [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
 | 
						|
!>        Brunton, N. Kutz: On Dynamic Mode Decomposition:
 | 
						|
!>        Theory and Applications, Journal of Computational
 | 
						|
!>        Dynamics 1(2), 391 -421, 2014.
 | 
						|
!>    \endverbatim
 | 
						|
!......................................................................
 | 
						|
!>    \par Developed and supported by:
 | 
						|
!     ================================
 | 
						|
!>    \verbatim
 | 
						|
!>    Developed and coded by Zlatko Drmac, Faculty of Science,
 | 
						|
!>    University of Zagreb;  drmac@math.hr
 | 
						|
!>    In cooperation with
 | 
						|
!>    AIMdyn Inc., Santa Barbara, CA.
 | 
						|
!>    and supported by
 | 
						|
!>    - DARPA SBIR project "Koopman Operator-Based Forecasting
 | 
						|
!>    for Nonstationary Processes from Near-Term, Limited
 | 
						|
!>    Observational Data" Contract No: W31P4Q-21-C-0007
 | 
						|
!>    - DARPA PAI project "Physics-Informed Machine Learning
 | 
						|
!>    Methodologies" Contract No: HR0011-18-9-0033
 | 
						|
!>    - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
 | 
						|
!>    Framework for Space-Time Analysis of Process Dynamics"
 | 
						|
!>    Contract No: HR0011-16-C-0116
 | 
						|
!>    Any opinions, findings and conclusions or recommendations
 | 
						|
!>    expressed in this material are those of the author and
 | 
						|
!>    do not necessarily reflect the views of the DARPA SBIR
 | 
						|
!>    Program Office
 | 
						|
!>    \endverbatim
 | 
						|
!......................................................................
 | 
						|
!>    \par Distribution Statement A:
 | 
						|
!     ==============================
 | 
						|
!>    \verbatim
 | 
						|
!>    Approved for Public Release, Distribution Unlimited.
 | 
						|
!>    Cleared by DARPA on September 29, 2022
 | 
						|
!>    \endverbatim
 | 
						|
!............................................................
 | 
						|
!     Arguments
 | 
						|
!     =========
 | 
						|
!
 | 
						|
!>    \param[in] JOBS
 | 
						|
!>    \verbatim
 | 
						|
!>    JOBS (input) CHARACTER*1
 | 
						|
!>    Determines whether the initial data snapshots are scaled
 | 
						|
!>    by a diagonal matrix.
 | 
						|
!>    'S' :: The data snapshots matrices X and Y are multiplied
 | 
						|
!>           with a diagonal matrix D so that X*D has unit
 | 
						|
!>           nonzero columns (in the Euclidean 2-norm)
 | 
						|
!>    'C' :: The snapshots are scaled as with the 'S' option.
 | 
						|
!>           If it is found that an i-th column of X is zero
 | 
						|
!>           vector and the corresponding i-th column of Y is
 | 
						|
!>           non-zero, then the i-th column of Y is set to
 | 
						|
!>           zero and a warning flag is raised.
 | 
						|
!>    'Y' :: The data snapshots matrices X and Y are multiplied
 | 
						|
!>           by a diagonal matrix D so that Y*D has unit
 | 
						|
!>           nonzero columns (in the Euclidean 2-norm)
 | 
						|
!>    'N' :: No data scaling.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] JOBZ
 | 
						|
!>    \verbatim
 | 
						|
!>    JOBZ (input) CHARACTER*1
 | 
						|
!>    Determines whether the eigenvectors (Koopman modes) will
 | 
						|
!>    be computed.
 | 
						|
!>    'V' :: The eigenvectors (Koopman modes) will be computed
 | 
						|
!>           and returned in the matrix Z.
 | 
						|
!>           See the description of Z.
 | 
						|
!>    'F' :: The eigenvectors (Koopman modes) will be returned
 | 
						|
!>           in factored form as the product X(:,1:K)*W, where X
 | 
						|
!>           contains a POD basis (leading left singular vectors
 | 
						|
!>           of the data matrix X) and W contains the eigenvectors
 | 
						|
!>           of the corresponding Rayleigh quotient.
 | 
						|
!>           See the descriptions of K, X, W, Z.
 | 
						|
!>    'N' :: The eigenvectors are not computed.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] JOBR
 | 
						|
!>    \verbatim
 | 
						|
!>    JOBR (input) CHARACTER*1
 | 
						|
!>    Determines whether to compute the residuals.
 | 
						|
!>    'R' :: The residuals for the computed eigenpairs will be
 | 
						|
!>           computed and stored in the array RES.
 | 
						|
!>           See the description of RES.
 | 
						|
!>           For this option to be legal, JOBZ must be 'V'.
 | 
						|
!>    'N' :: The residuals are not computed.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] JOBF
 | 
						|
!>    \verbatim
 | 
						|
!>    JOBF (input) CHARACTER*1
 | 
						|
!>    Specifies whether to store information needed for post-
 | 
						|
!>    processing (e.g. computing refined Ritz vectors)
 | 
						|
!>    'R' :: The matrix needed for the refinement of the Ritz
 | 
						|
!>           vectors is computed and stored in the array B.
 | 
						|
!>           See the description of B.
 | 
						|
!>    'E' :: The unscaled eigenvectors of the Exact DMD are
 | 
						|
!>           computed and returned in the array B. See the
 | 
						|
!>           description of B.
 | 
						|
!>    'N' :: No eigenvector refinement data is computed.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] WHTSVD
 | 
						|
!>    \verbatim
 | 
						|
!>    WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
 | 
						|
!>    Allows for a selection of the SVD algorithm from the
 | 
						|
!>    LAPACK library.
 | 
						|
!>    1 :: ZGESVD (the QR SVD algorithm)
 | 
						|
!>    2 :: ZGESDD (the Divide and Conquer algorithm; if enough
 | 
						|
!>         workspace available, this is the fastest option)
 | 
						|
!>    3 :: ZGESVDQ (the preconditioned QR SVD  ; this and 4
 | 
						|
!>         are the most accurate options)
 | 
						|
!>    4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3
 | 
						|
!>         are the most accurate options)
 | 
						|
!>    For the four methods above, a significant difference in
 | 
						|
!>    the accuracy of small singular values is possible if
 | 
						|
!>    the snapshots vary in norm so that X is severely
 | 
						|
!>    ill-conditioned. If small (smaller than EPS*||X||)
 | 
						|
!>    singular values are of interest and JOBS=='N',  then
 | 
						|
!>    the options (3, 4) give the most accurate results, where
 | 
						|
!>    the option 4 is slightly better and with stronger
 | 
						|
!>    theoretical background.
 | 
						|
!>    If JOBS=='S', i.e. the columns of X will be normalized,
 | 
						|
!>    then all methods give nearly equally accurate results.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] M
 | 
						|
!>    \verbatim
 | 
						|
!>    M (input) INTEGER, M>= 0
 | 
						|
!>    The state space dimension (the row dimension of X, Y).
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] N
 | 
						|
!>    \verbatim
 | 
						|
!>    N (input) INTEGER, 0 <= N <= M
 | 
						|
!>    The number of data snapshot pairs
 | 
						|
!>    (the number of columns of X and Y).
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] LDX
 | 
						|
!>    \verbatim
 | 
						|
!>    X (input/output) COMPLEX(KIND=WP) M-by-N array
 | 
						|
!>    > On entry, X contains the data snapshot matrix X. It is
 | 
						|
!>    assumed that the column norms of X are in the range of
 | 
						|
!>    the normalized floating point numbers.
 | 
						|
!>    < On exit, the leading K columns of X contain a POD basis,
 | 
						|
!>    i.e. the leading K left singular vectors of the input
 | 
						|
!>    data matrix X, U(:,1:K). All N columns of X contain all
 | 
						|
!>    left singular vectors of the input matrix X.
 | 
						|
!>    See the descriptions of K, Z and W.
 | 
						|
!.....
 | 
						|
!>    LDX (input) INTEGER, LDX >= M
 | 
						|
!>    The leading dimension of the array X.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in,out] Y
 | 
						|
!>    \verbatim
 | 
						|
!>    Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array
 | 
						|
!>    > On entry, Y contains the data snapshot matrix Y
 | 
						|
!>    < On exit,
 | 
						|
!>    If JOBR == 'R', the leading K columns of Y  contain
 | 
						|
!>    the residual vectors for the computed Ritz pairs.
 | 
						|
!>    See the description of RES.
 | 
						|
!>    If JOBR == 'N', Y contains the original input data,
 | 
						|
!>                    scaled according to the value of JOBS.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] LDY
 | 
						|
!>    \verbatim
 | 
						|
!>    LDY (input) INTEGER , LDY >= M
 | 
						|
!>    The leading dimension of the array Y.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] NRNK
 | 
						|
!>    \verbatim
 | 
						|
!>    NRNK (input) INTEGER
 | 
						|
!>    Determines the mode how to compute the numerical rank,
 | 
						|
!>    i.e. how to truncate small singular values of the input
 | 
						|
!>    matrix X. On input, if
 | 
						|
!>    NRNK = -1 :: i-th singular value sigma(i) is truncated
 | 
						|
!>                 if sigma(i) <= TOL*sigma(1)
 | 
						|
!>                 This option is recommended.
 | 
						|
!>    NRNK = -2 :: i-th singular value sigma(i) is truncated
 | 
						|
!>                 if sigma(i) <= TOL*sigma(i-1)
 | 
						|
!>                 This option is included for R&D purposes.
 | 
						|
!>                 It requires highly accurate SVD, which
 | 
						|
!>                 may not be feasible.
 | 
						|
!>    The numerical rank can be enforced by using positive
 | 
						|
!>    value of NRNK as follows:
 | 
						|
!>    0 < NRNK <= N :: at most NRNK largest singular values
 | 
						|
!>    will be used. If the number of the computed nonzero
 | 
						|
!>    singular values is less than NRNK, then only those
 | 
						|
!>    nonzero values will be used and the actually used
 | 
						|
!>    dimension is less than NRNK. The actual number of
 | 
						|
!>    the nonzero singular values is returned in the variable
 | 
						|
!>    K. See the descriptions of TOL and  K.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] TOL
 | 
						|
!>    \verbatim
 | 
						|
!>    TOL (input) REAL(KIND=WP), 0 <= TOL < 1
 | 
						|
!>    The tolerance for truncating small singular values.
 | 
						|
!>    See the description of NRNK.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] K
 | 
						|
!>    \verbatim
 | 
						|
!>    K (output) INTEGER,  0 <= K <= N
 | 
						|
!>    The dimension of the POD basis for the data snapshot
 | 
						|
!>    matrix X and the number of the computed Ritz pairs.
 | 
						|
!>    The value of K is determined according to the rule set
 | 
						|
!>    by the parameters NRNK and TOL.
 | 
						|
!>    See the descriptions of NRNK and TOL.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] EIGS
 | 
						|
!>    \verbatim
 | 
						|
!>    EIGS (output) COMPLEX(KIND=WP) N-by-1 array
 | 
						|
!>    The leading K (K<=N) entries of EIGS contain
 | 
						|
!>    the computed eigenvalues (Ritz values).
 | 
						|
!>    See the descriptions of K, and Z.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] Z
 | 
						|
!>    \verbatim
 | 
						|
!>    Z (workspace/output) COMPLEX(KIND=WP)  M-by-N array
 | 
						|
!>    If JOBZ =='V' then Z contains the  Ritz vectors.  Z(:,i)
 | 
						|
!>    is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
 | 
						|
!>    If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
 | 
						|
!>    the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i)
 | 
						|
!>    is an eigenvector corresponding to EIGS(i). The columns
 | 
						|
!>    of W(1:k,1:K) are the computed eigenvectors of the
 | 
						|
!>    K-by-K Rayleigh quotient.
 | 
						|
!>    See the descriptions of EIGS, X and W.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] LDZ
 | 
						|
!>    \verbatim
 | 
						|
!>    LDZ (input) INTEGER , LDZ >= M
 | 
						|
!>    The leading dimension of the array Z.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] RES
 | 
						|
!>    \verbatim
 | 
						|
!>    RES (output) REAL(KIND=WP) N-by-1 array
 | 
						|
!>    RES(1:K) contains the residuals for the K computed
 | 
						|
!>    Ritz pairs,
 | 
						|
!>    RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
 | 
						|
!>    See the description of EIGS and Z.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] B
 | 
						|
!>    \verbatim
 | 
						|
!>    B (output) COMPLEX(KIND=WP)  M-by-N array.
 | 
						|
!>    IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
 | 
						|
!>    be used for computing the refined vectors; see further
 | 
						|
!>    details in the provided references.
 | 
						|
!>    If JOBF == 'E', B(1:M,1:K) contains
 | 
						|
!>    A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
 | 
						|
!>    Exact DMD, up to scaling by the inverse eigenvalues.
 | 
						|
!>    If JOBF =='N', then B is not referenced.
 | 
						|
!>    See the descriptions of X, W, K.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] LDB
 | 
						|
!>    \verbatim
 | 
						|
!>    LDB (input) INTEGER, LDB >= M
 | 
						|
!>    The leading dimension of the array B.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] W
 | 
						|
!>    \verbatim
 | 
						|
!>    W (workspace/output) COMPLEX(KIND=WP) N-by-N array
 | 
						|
!>    On exit, W(1:K,1:K) contains the K computed
 | 
						|
!>    eigenvectors of the matrix Rayleigh quotient.
 | 
						|
!>    The Ritz vectors (returned in Z) are the
 | 
						|
!>    product of X (containing a POD basis for the input
 | 
						|
!>    matrix X) and W. See the descriptions of K, S, X and Z.
 | 
						|
!>    W is also used as a workspace to temporarily store the
 | 
						|
!>    right singular vectors of X.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] LDW
 | 
						|
!>    \verbatim
 | 
						|
!>    LDW (input) INTEGER, LDW >= N
 | 
						|
!>    The leading dimension of the array W.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] S
 | 
						|
!>    \verbatim
 | 
						|
!>    S (workspace/output) COMPLEX(KIND=WP) N-by-N array
 | 
						|
!>    The array S(1:K,1:K) is used for the matrix Rayleigh
 | 
						|
!>    quotient. This content is overwritten during
 | 
						|
!>    the eigenvalue decomposition by ZGEEV.
 | 
						|
!>    See the description of K.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] LDS
 | 
						|
!>    \verbatim
 | 
						|
!>    LDS (input) INTEGER, LDS >= N
 | 
						|
!>    The leading dimension of the array S.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] ZWORK
 | 
						|
!>    \verbatim
 | 
						|
!>    ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array
 | 
						|
!>    ZWORK is used as complex workspace in the complex SVD, as
 | 
						|
!>    specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing
 | 
						|
!>    the eigenvalues of a Rayleigh quotient.
 | 
						|
!>    If the call to ZGEDMD is only workspace query, then
 | 
						|
!>    ZWORK(1) contains the minimal complex workspace length and
 | 
						|
!>    ZWORK(2) is the optimal complex workspace length.
 | 
						|
!>    Hence, the length of work is at least 2.
 | 
						|
!>    See the description of LZWORK.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] LZWORK
 | 
						|
!>    \verbatim
 | 
						|
!>    LZWORK (input) INTEGER
 | 
						|
!>    The minimal length of the workspace vector ZWORK.
 | 
						|
!>    LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV),
 | 
						|
!>    where LZWORK_ZGEEV = MAX( 1, 2*N )  and the minimal
 | 
						|
!>    LZWORK_SVD is calculated as follows
 | 
						|
!>    If WHTSVD == 1 :: ZGESVD ::
 | 
						|
!>       LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N))
 | 
						|
!>    If WHTSVD == 2 :: ZGESDD ::
 | 
						|
!>       LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
 | 
						|
!>    If WHTSVD == 3 :: ZGESVDQ ::
 | 
						|
!>       LZWORK_SVD = obtainable by a query
 | 
						|
!>    If WHTSVD == 4 :: ZGEJSV ::
 | 
						|
!>       LZWORK_SVD = obtainable by a query
 | 
						|
!>    If on entry LZWORK = -1, then a workspace query is
 | 
						|
!>    assumed and the procedure only computes the minimal
 | 
						|
!>    and the optimal workspace lengths and returns them in
 | 
						|
!>    LZWORK(1) and LZWORK(2), respectively.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] RWORK
 | 
						|
!>    \verbatim
 | 
						|
!>    RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array
 | 
						|
!>    On exit, RWORK(1:N) contains the singular values of
 | 
						|
!>    X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
 | 
						|
!>    If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain
 | 
						|
!>    scaling factor RWORK(N+2)/RWORK(N+1) used to scale X
 | 
						|
!>    and Y to avoid overflow in the SVD of X.
 | 
						|
!>    This may be of interest if the scaling option is off
 | 
						|
!>    and as many as possible smallest eigenvalues are
 | 
						|
!>    desired to the highest feasible accuracy.
 | 
						|
!>    If the call to ZGEDMD is only workspace query, then
 | 
						|
!>    RWORK(1) contains the minimal workspace length.
 | 
						|
!>    See the description of LRWORK.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] LRWORK
 | 
						|
!>    \verbatim
 | 
						|
!>    LRWORK (input) INTEGER
 | 
						|
!>    The minimal length of the workspace vector RWORK.
 | 
						|
!>    LRWORK is calculated as follows:
 | 
						|
!>    LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where
 | 
						|
!>    LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace
 | 
						|
!>    for the SVD subroutine determined by the input parameter
 | 
						|
!>    WHTSVD.
 | 
						|
!>    If WHTSVD == 1 :: ZGESVD ::
 | 
						|
!>       LRWORK_SVD = 5*MIN(M,N)
 | 
						|
!>    If WHTSVD == 2 :: ZGESDD ::
 | 
						|
!>       LRWORK_SVD =  MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N),
 | 
						|
!>       2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
 | 
						|
!>    If WHTSVD == 3 :: ZGESVDQ ::
 | 
						|
!>       LRWORK_SVD = obtainable by a query
 | 
						|
!>    If WHTSVD == 4 :: ZGEJSV ::
 | 
						|
!>       LRWORK_SVD = obtainable by a query
 | 
						|
!>    If on entry LRWORK = -1, then a workspace query is
 | 
						|
!>    assumed and the procedure only computes the minimal
 | 
						|
!>    real workspace length and returns it in RWORK(1).
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] IWORK
 | 
						|
!>    \verbatim
 | 
						|
!>    IWORK (workspace/output) INTEGER LIWORK-by-1 array
 | 
						|
!>    Workspace that is required only if WHTSVD equals
 | 
						|
!>    2 , 3 or 4. (See the description of WHTSVD).
 | 
						|
!>    If on entry LWORK =-1 or LIWORK=-1, then the
 | 
						|
!>    minimal length of IWORK is computed and returned in
 | 
						|
!>    IWORK(1). See the description of LIWORK.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[in] LIWORK
 | 
						|
!>    \verbatim
 | 
						|
!>    LIWORK (input) INTEGER
 | 
						|
!>    The minimal length of the workspace vector IWORK.
 | 
						|
!>    If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
 | 
						|
!>    If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
 | 
						|
!>    If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
 | 
						|
!>    If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
 | 
						|
!>    If on entry LIWORK = -1, then a workspace query is
 | 
						|
!>    assumed and the procedure only computes the minimal
 | 
						|
!>    and the optimal workspace lengths for  ZWORK, RWORK and
 | 
						|
!>    IWORK. See the descriptions of ZWORK, RWORK and IWORK.
 | 
						|
!>    \endverbatim
 | 
						|
!.....
 | 
						|
!>    \param[out] INFO
 | 
						|
!>    \verbatim
 | 
						|
!>    INFO (output) INTEGER
 | 
						|
!>    -i < 0 :: On entry, the i-th argument had an
 | 
						|
!>              illegal value
 | 
						|
!>       = 0 :: Successful return.
 | 
						|
!>       = 1 :: Void input. Quick exit (M=0 or N=0).
 | 
						|
!>       = 2 :: The SVD computation of X did not converge.
 | 
						|
!>              Suggestion: Check the input data and/or
 | 
						|
!>              repeat with different WHTSVD.
 | 
						|
!>       = 3 :: The computation of the eigenvalues did not
 | 
						|
!>              converge.
 | 
						|
!>       = 4 :: If data scaling was requested on input and
 | 
						|
!>              the procedure found inconsistency in the data
 | 
						|
!>              such that for some column index i,
 | 
						|
!>              X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
 | 
						|
!>              to zero if JOBS=='C'. The computation proceeds
 | 
						|
!>              with original or modified data and warning
 | 
						|
!>              flag is set with INFO=4.
 | 
						|
!>    \endverbatim
 | 
						|
!
 | 
						|
!  Authors:
 | 
						|
!  ========
 | 
						|
!
 | 
						|
!> \author Zlatko Drmac
 | 
						|
!
 | 
						|
!> \ingroup gedmd
 | 
						|
!
 | 
						|
!.............................................................
 | 
						|
!.............................................................
 | 
						|
      SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF,  WHTSVD,   &
 | 
						|
                         M, N, X, LDX, Y, LDY, NRNK, TOL,   &
 | 
						|
                         K, EIGS, Z, LDZ, RES, B,    LDB,   &
 | 
						|
                         W, LDW,  S, LDS, ZWORK,  LZWORK,   &
 | 
						|
                         RWORK, LRWORK, IWORK, LIWORK, INFO )
 | 
						|
!
 | 
						|
!  -- LAPACK driver routine                                           --
 | 
						|
!
 | 
						|
!  -- LAPACK is a software package provided by University of          --
 | 
						|
!  -- Tennessee, University of California Berkeley, University of     --
 | 
						|
!  -- Colorado Denver and NAG Ltd..                                   --
 | 
						|
!
 | 
						|
!.....
 | 
						|
      USE                   iso_fortran_env
 | 
						|
      IMPLICIT NONE
 | 
						|
      INTEGER, PARAMETER :: WP = real64
 | 
						|
!
 | 
						|
!     Scalar arguments
 | 
						|
!     ~~~~~~~~~~~~~~~~
 | 
						|
      CHARACTER, INTENT(IN)   :: JOBS,   JOBZ,  JOBR,  JOBF
 | 
						|
      INTEGER,   INTENT(IN)   :: WHTSVD, M, N,   LDX,  LDY, &
 | 
						|
                                 NRNK, LDZ, LDB, LDW,  LDS, &
 | 
						|
                                 LIWORK, LRWORK, LZWORK
 | 
						|
      INTEGER,       INTENT(OUT)  :: K, INFO
 | 
						|
      REAL(KIND=WP), INTENT(IN)   ::    TOL
 | 
						|
!
 | 
						|
!     Array arguments
 | 
						|
!     ~~~~~~~~~~~~~~~
 | 
						|
      COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
 | 
						|
      COMPLEX(KIND=WP), INTENT(OUT)   :: Z(LDZ,*), B(LDB,*), &
 | 
						|
                                         W(LDW,*), S(LDS,*)
 | 
						|
      COMPLEX(KIND=WP), INTENT(OUT)   :: EIGS(*)
 | 
						|
      COMPLEX(KIND=WP), INTENT(OUT)   :: ZWORK(*)
 | 
						|
      REAL(KIND=WP),    INTENT(OUT)   :: RES(*)
 | 
						|
      REAL(KIND=WP),    INTENT(OUT)   :: RWORK(*)
 | 
						|
      INTEGER,          INTENT(OUT)   :: IWORK(*)
 | 
						|
!
 | 
						|
!     Parameters
 | 
						|
!     ~~~~~~~~~~
 | 
						|
      REAL(KIND=WP),    PARAMETER ::  ONE = 1.0_WP
 | 
						|
      REAL(KIND=WP),    PARAMETER :: ZERO = 0.0_WP
 | 
						|
      COMPLEX(KIND=WP), PARAMETER ::  ZONE = ( 1.0_WP, 0.0_WP )
 | 
						|
      COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP )
 | 
						|
!
 | 
						|
!     Local scalars
 | 
						|
!     ~~~~~~~~~~~~~
 | 
						|
      REAL(KIND=WP) :: OFL,   ROOTSC, SCALE,  SMALL,    &
 | 
						|
                       SSUM,  XSCL1,  XSCL2
 | 
						|
      INTEGER       ::  i,  j,  IMINWR,  INFO1, INFO2,  &
 | 
						|
                        LWRKEV, LWRSDD, LWRSVD, LWRSVJ, &
 | 
						|
                        LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
 | 
						|
                        MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
 | 
						|
                        OLWORK, MLRWRK
 | 
						|
      LOGICAL       ::  BADXY, LQUERY, SCCOLX, SCCOLY,  &
 | 
						|
                        WNTEX, WNTREF, WNTRES, WNTVEC
 | 
						|
      CHARACTER     ::  JOBZL, T_OR_N
 | 
						|
      CHARACTER     ::  JSVOPT
 | 
						|
!
 | 
						|
!     Local arrays
 | 
						|
!     ~~~~~~~~~~~~
 | 
						|
      REAL(KIND=WP) :: RDUMMY(2)
 | 
						|
!
 | 
						|
!     External functions (BLAS and LAPACK)
 | 
						|
!     ~~~~~~~~~~~~~~~~~
 | 
						|
      REAL(KIND=WP) ZLANGE, DLAMCH, DZNRM2
 | 
						|
      EXTERNAL      ZLANGE, DLAMCH, DZNRM2, IZAMAX
 | 
						|
      INTEGER                               IZAMAX
 | 
						|
      LOGICAL       DISNAN, LSAME
 | 
						|
      EXTERNAL      DISNAN, LSAME
 | 
						|
!
 | 
						|
!     External subroutines (BLAS and LAPACK)
 | 
						|
!     ~~~~~~~~~~~~~~~~~~~~
 | 
						|
      EXTERNAL      ZAXPY,  ZGEMM,  ZDSCAL
 | 
						|
      EXTERNAL      ZGEEV,  ZGEJSV, ZGESDD, ZGESVD, ZGESVDQ, &
 | 
						|
                    ZLACPY, ZLASCL, ZLASSQ, XERBLA
 | 
						|
!
 | 
						|
!     Intrinsic functions
 | 
						|
!     ~~~~~~~~~~~~~~~~~~~
 | 
						|
      INTRINSIC     DBLE, INT, MAX, SQRT
 | 
						|
!............................................................
 | 
						|
!
 | 
						|
!    Test the input arguments
 | 
						|
!
 | 
						|
      WNTRES = LSAME(JOBR,'R')
 | 
						|
      SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
 | 
						|
      SCCOLY = LSAME(JOBS,'Y')
 | 
						|
      WNTVEC = LSAME(JOBZ,'V')
 | 
						|
      WNTREF = LSAME(JOBF,'R')
 | 
						|
      WNTEX  = LSAME(JOBF,'E')
 | 
						|
      INFO   = 0
 | 
						|
      LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) &
 | 
						|
                                  .OR. ( LRWORK == -1 ) )
 | 
						|
!
 | 
						|
      IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
 | 
						|
                                  LSAME(JOBS,'N')) )   THEN
 | 
						|
          INFO = -1
 | 
						|
      ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N')        &
 | 
						|
                              .OR. LSAME(JOBZ,'F')) )  THEN
 | 
						|
          INFO = -2
 | 
						|
      ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR.  &
 | 
						|
                ( WNTRES .AND. (.NOT.WNTVEC) ) )       THEN
 | 
						|
          INFO = -3
 | 
						|
      ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR.             &
 | 
						|
                LSAME(JOBF,'N') ) )                    THEN
 | 
						|
          INFO = -4
 | 
						|
      ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR.  &
 | 
						|
                      (WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
 | 
						|
          INFO = -5
 | 
						|
      ELSE IF ( M < 0 )   THEN
 | 
						|
          INFO = -6
 | 
						|
      ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
 | 
						|
          INFO = -7
 | 
						|
      ELSE IF ( LDX < M ) THEN
 | 
						|
          INFO = -9
 | 
						|
      ELSE IF ( LDY < M ) THEN
 | 
						|
          INFO = -11
 | 
						|
      ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
 | 
						|
                ((NRNK >= 1).AND.(NRNK <=N ))) )      THEN
 | 
						|
          INFO = -12
 | 
						|
      ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) )  THEN
 | 
						|
          INFO = -13
 | 
						|
      ELSE IF ( LDZ < M ) THEN
 | 
						|
          INFO = -17
 | 
						|
      ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
 | 
						|
          INFO = -20
 | 
						|
      ELSE IF ( LDW < N ) THEN
 | 
						|
          INFO = -22
 | 
						|
      ELSE IF ( LDS < N ) THEN
 | 
						|
          INFO = -24
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF ( INFO == 0 ) THEN
 | 
						|
          ! Compute the minimal and the optimal workspace
 | 
						|
          ! requirements. Simulate running the code and
 | 
						|
          ! determine minimal and optimal sizes of the
 | 
						|
          ! workspace at any moment of the run.
 | 
						|
         IF ( N == 0 ) THEN
 | 
						|
             ! Quick return. All output except K is void.
 | 
						|
             ! INFO=1 signals the void input.
 | 
						|
             ! In case of a workspace query, the default
 | 
						|
             ! minimal workspace lengths are returned.
 | 
						|
            IF ( LQUERY ) THEN
 | 
						|
                IWORK(1) = 1
 | 
						|
                RWORK(1) = 1
 | 
						|
                ZWORK(1) = 2
 | 
						|
                ZWORK(2) = 2
 | 
						|
            ELSE
 | 
						|
               K   =  0
 | 
						|
            END IF
 | 
						|
            INFO = 1
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
 | 
						|
         IMINWR = 1
 | 
						|
         MLRWRK = MAX(1,N)
 | 
						|
         MLWORK = 2
 | 
						|
         OLWORK = 2
 | 
						|
         SELECT CASE ( WHTSVD )
 | 
						|
         CASE (1)
 | 
						|
             ! The following is specified as the minimal
 | 
						|
             ! length of WORK in the definition of ZGESVD:
 | 
						|
             ! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
 | 
						|
             MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N))
 | 
						|
             MLWORK = MAX(MLWORK,MWRSVD)
 | 
						|
             MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N))
 | 
						|
             IF ( LQUERY ) THEN
 | 
						|
                CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, &
 | 
						|
                     B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 )
 | 
						|
                LWRSVD = INT( ZWORK(1) )
 | 
						|
                OLWORK = MAX(OLWORK,LWRSVD)
 | 
						|
             END IF
 | 
						|
         CASE (2)
 | 
						|
             ! The following is specified as the minimal
 | 
						|
             ! length of WORK in the definition of ZGESDD:
 | 
						|
             ! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N).
 | 
						|
             ! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N)
 | 
						|
             ! In LAPACK 3.10.1 RWORK is defined differently.
 | 
						|
             ! Below we take max over the two versions.
 | 
						|
             ! IMINWR = 8*MIN(M,N)
 | 
						|
             MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N)
 | 
						|
             MLWORK = MAX(MLWORK,MWRSDD)
 | 
						|
             IMINWR = 8*MIN(M,N)
 | 
						|
             MLRWRK = MAX( MLRWRK,  N +                    &
 | 
						|
                      MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), &
 | 
						|
                           5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), &
 | 
						|
                           2*MAX(M,N)*MIN(M,N)+            &
 | 
						|
                           2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) )
 | 
						|
             IF ( LQUERY ) THEN
 | 
						|
                CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B,LDB,&
 | 
						|
                     W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 )
 | 
						|
                LWRSDD = MAX( MWRSDD,INT( ZWORK(1) ))
 | 
						|
                ! Possible bug in ZGESDD optimal workspace size.
 | 
						|
                OLWORK = MAX(OLWORK,LWRSDD)
 | 
						|
             END IF
 | 
						|
         CASE (3)
 | 
						|
             CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
 | 
						|
                  X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK,  &
 | 
						|
                  IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 )
 | 
						|
             IMINWR = IWORK(1)
 | 
						|
             MWRSVQ = INT(ZWORK(2))
 | 
						|
             MLWORK = MAX(MLWORK,MWRSVQ)
 | 
						|
             MLRWRK  = MAX(MLRWRK,N + INT(RDUMMY(1)))
 | 
						|
             IF ( LQUERY ) THEN
 | 
						|
                LWRSVQ = INT(ZWORK(1))
 | 
						|
                OLWORK = MAX(OLWORK,LWRSVQ)
 | 
						|
             END IF
 | 
						|
         CASE (4)
 | 
						|
             JSVOPT = 'J'
 | 
						|
             CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, &
 | 
						|
                   N, X, LDX, RWORK, Z, LDZ, W, LDW,       &
 | 
						|
                   ZWORK, -1, RDUMMY, -1, IWORK, INFO1 )
 | 
						|
             IMINWR = IWORK(1)
 | 
						|
             MWRSVJ = INT(ZWORK(2))
 | 
						|
             MLWORK = MAX(MLWORK,MWRSVJ)
 | 
						|
             MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1))))
 | 
						|
             IF ( LQUERY ) THEN
 | 
						|
                LWRSVJ = INT(ZWORK(1))
 | 
						|
                OLWORK = MAX(OLWORK,LWRSVJ)
 | 
						|
             END IF
 | 
						|
         END SELECT
 | 
						|
         IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
 | 
						|
             JOBZL = 'V'
 | 
						|
         ELSE
 | 
						|
             JOBZL = 'N'
 | 
						|
         END IF
 | 
						|
         ! Workspace calculation to the ZGEEV call
 | 
						|
         MWRKEV = MAX( 1, 2*N )
 | 
						|
         MLWORK = MAX(MLWORK,MWRKEV)
 | 
						|
         MLRWRK = MAX(MLRWRK,N+2*N)
 | 
						|
         IF ( LQUERY ) THEN
 | 
						|
             CALL ZGEEV( 'N', JOBZL, N, S, LDS, EIGS, &
 | 
						|
              W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 )
 | 
						|
                LWRKEV = INT(ZWORK(1))
 | 
						|
                OLWORK = MAX( OLWORK, LWRKEV )
 | 
						|
         END IF
 | 
						|
!
 | 
						|
         IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30
 | 
						|
         IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28
 | 
						|
         IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26
 | 
						|
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF( INFO /= 0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGEDMD', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF ( LQUERY ) THEN
 | 
						|
!     Return minimal and optimal workspace sizes
 | 
						|
          IWORK(1) = IMINWR
 | 
						|
          RWORK(1) = MLRWRK
 | 
						|
          ZWORK(1) = MLWORK
 | 
						|
          ZWORK(2) = OLWORK
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
!............................................................
 | 
						|
!
 | 
						|
      OFL   = DLAMCH('O')
 | 
						|
      SMALL = DLAMCH('S')
 | 
						|
      BADXY = .FALSE.
 | 
						|
!
 | 
						|
!     <1> Optional scaling of the snapshots (columns of X, Y)
 | 
						|
!     ==========================================================
 | 
						|
      IF ( SCCOLX ) THEN
 | 
						|
          ! The columns of X will be normalized.
 | 
						|
          ! To prevent overflows, the column norms of X are
 | 
						|
          ! carefully computed using ZLASSQ.
 | 
						|
          K = 0
 | 
						|
          DO i = 1, N
 | 
						|
            !WORK(i) = DZNRM2( M, X(1,i), 1 )
 | 
						|
            SSUM  = ONE
 | 
						|
            SCALE = ZERO
 | 
						|
            CALL ZLASSQ( M, X(1,i), 1, SCALE, SSUM )
 | 
						|
            IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
 | 
						|
                K    =  0
 | 
						|
                INFO = -8
 | 
						|
                CALL XERBLA('ZGEDMD',-INFO)
 | 
						|
            END IF
 | 
						|
            IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
 | 
						|
               ROOTSC = SQRT(SSUM)
 | 
						|
               IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
 | 
						|
!                 Norm of X(:,i) overflows. First, X(:,i)
 | 
						|
!                 is scaled by
 | 
						|
!                 ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
 | 
						|
!                 Next, the norm of X(:,i) is stored without
 | 
						|
!                 overflow as RWORK(i) = - SCALE * (ROOTSC/M),
 | 
						|
!                 the minus sign indicating the 1/M factor.
 | 
						|
!                 Scaling is performed without overflow, and
 | 
						|
!                 underflow may occur in the smallest entries
 | 
						|
!                 of X(:,i). The relative backward and forward
 | 
						|
!                 errors are small in the ell_2 norm.
 | 
						|
                  CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
 | 
						|
                               M, 1, X(1,i), LDX, INFO2 )
 | 
						|
                  RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
 | 
						|
               ELSE
 | 
						|
!                 X(:,i) will be scaled to unit 2-norm
 | 
						|
                  RWORK(i) =   SCALE * ROOTSC
 | 
						|
                  CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
 | 
						|
                               X(1,i), LDX, INFO2 )      ! LAPACK CALL
 | 
						|
!                 X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i)   ! INTRINSIC
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               RWORK(i) = ZERO
 | 
						|
               K = K + 1
 | 
						|
            END IF
 | 
						|
          END DO
 | 
						|
          IF ( K == N ) THEN
 | 
						|
             ! All columns of X are zero. Return error code -8.
 | 
						|
             ! (the 8th input variable had an illegal value)
 | 
						|
             K = 0
 | 
						|
             INFO = -8
 | 
						|
             CALL XERBLA('ZGEDMD',-INFO)
 | 
						|
             RETURN
 | 
						|
          END IF
 | 
						|
          DO i = 1, N
 | 
						|
!           Now, apply the same scaling to the columns of Y.
 | 
						|
            IF ( RWORK(i) >  ZERO ) THEN
 | 
						|
                CALL ZDSCAL( M, ONE/RWORK(i), Y(1,i), 1 )  ! BLAS CALL
 | 
						|
!               Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i)       ! INTRINSIC
 | 
						|
            ELSE IF ( RWORK(i) < ZERO ) THEN
 | 
						|
                CALL ZLASCL( 'G', 0, 0, -RWORK(i),          &
 | 
						|
                     ONE/DBLE(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL
 | 
						|
            ELSE IF ( ABS(Y(IZAMAX(M, Y(1,i),1),i ))  &
 | 
						|
                                            /= ZERO ) THEN
 | 
						|
!               X(:,i) is zero vector. For consistency,
 | 
						|
!               Y(:,i) should also be zero. If Y(:,i) is not
 | 
						|
!               zero, then the data might be inconsistent or
 | 
						|
!               corrupted. If JOBS == 'C', Y(:,i) is set to
 | 
						|
!               zero and a warning flag is raised.
 | 
						|
!               The computation continues but the
 | 
						|
!               situation will be reported in the output.
 | 
						|
                BADXY = .TRUE.
 | 
						|
                IF ( LSAME(JOBS,'C')) &
 | 
						|
                CALL ZDSCAL( M, ZERO, Y(1,i), 1 )  ! BLAS CALL
 | 
						|
            END IF
 | 
						|
          END DO
 | 
						|
      END IF
 | 
						|
  !
 | 
						|
      IF ( SCCOLY ) THEN
 | 
						|
          ! The columns of Y will be normalized.
 | 
						|
          ! To prevent overflows, the column norms of Y are
 | 
						|
          ! carefully computed using ZLASSQ.
 | 
						|
          DO i = 1, N
 | 
						|
            !RWORK(i) = DZNRM2( M, Y(1,i), 1 )
 | 
						|
            SSUM  = ONE
 | 
						|
            SCALE = ZERO
 | 
						|
            CALL ZLASSQ( M, Y(1,i), 1, SCALE, SSUM )
 | 
						|
            IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
 | 
						|
                K    =  0
 | 
						|
                INFO = -10
 | 
						|
                CALL XERBLA('ZGEDMD',-INFO)
 | 
						|
            END IF
 | 
						|
            IF ( SCALE /= ZERO  .AND. (SSUM /= ZERO) ) THEN
 | 
						|
               ROOTSC = SQRT(SSUM)
 | 
						|
               IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
 | 
						|
!                 Norm of Y(:,i) overflows. First, Y(:,i)
 | 
						|
!                 is scaled by
 | 
						|
!                 ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
 | 
						|
!                 Next, the norm of Y(:,i) is stored without
 | 
						|
!                 overflow as RWORK(i) = - SCALE * (ROOTSC/M),
 | 
						|
!                 the minus sign indicating the 1/M factor.
 | 
						|
!                 Scaling is performed without overflow, and
 | 
						|
!                 underflow may occur in the smallest entries
 | 
						|
!                 of Y(:,i). The relative backward and forward
 | 
						|
!                 errors are small in the ell_2 norm.
 | 
						|
                  CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
 | 
						|
                               M, 1, Y(1,i), LDY, INFO2 )
 | 
						|
                  RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
 | 
						|
               ELSE
 | 
						|
!                 Y(:,i) will be scaled to unit 2-norm
 | 
						|
                  RWORK(i) =   SCALE * ROOTSC
 | 
						|
                  CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, &
 | 
						|
                               Y(1,i), LDY, INFO2 )             ! LAPACK CALL
 | 
						|
!                 Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i)          ! INTRINSIC
 | 
						|
               END IF
 | 
						|
            ELSE
 | 
						|
               RWORK(i) = ZERO
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
         DO i = 1, N
 | 
						|
!           Now, apply the same scaling to the columns of X.
 | 
						|
            IF ( RWORK(i) >  ZERO ) THEN
 | 
						|
                CALL ZDSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL
 | 
						|
!               X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i)      ! INTRINSIC
 | 
						|
            ELSE IF ( RWORK(i) < ZERO ) THEN
 | 
						|
                CALL ZLASCL( 'G', 0, 0, -RWORK(i),          &
 | 
						|
                     ONE/DBLE(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL
 | 
						|
            ELSE IF ( ABS(X(IZAMAX(M, X(1,i),1),i ))  &
 | 
						|
                                           /= ZERO ) THEN
 | 
						|
!               Y(:,i) is zero vector.  If X(:,i) is not
 | 
						|
!               zero, then a warning flag is raised.
 | 
						|
!               The computation continues but the
 | 
						|
!               situation will be reported in the output.
 | 
						|
                BADXY = .TRUE.
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
       END IF
 | 
						|
!
 | 
						|
!     <2> SVD of the data snapshot matrix X.
 | 
						|
!     =====================================
 | 
						|
!     The left singular vectors are stored in the array X.
 | 
						|
!     The right singular vectors are in the array W.
 | 
						|
!     The array W will later on contain the eigenvectors
 | 
						|
!     of a Rayleigh quotient.
 | 
						|
      NUMRNK = N
 | 
						|
      SELECT CASE ( WHTSVD )
 | 
						|
         CASE (1)
 | 
						|
             CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, &
 | 
						|
                  LDB, W, LDW, ZWORK, LZWORK,  RWORK(N+1), INFO1 ) ! LAPACK CALL
 | 
						|
             T_OR_N = 'C'
 | 
						|
         CASE (2)
 | 
						|
            CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, &
 | 
						|
                 LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 )   ! LAPACK CALL
 | 
						|
            T_OR_N = 'C'
 | 
						|
         CASE (3)
 | 
						|
              CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
 | 
						|
                   X, LDX, RWORK, Z, LDZ, W, LDW, &
 | 
						|
                   NUMRNK, IWORK, LIWORK, ZWORK,     &
 | 
						|
                   LZWORK, RWORK(N+1), LRWORK-N, INFO1)     ! LAPACK CALL
 | 
						|
              CALL ZLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX )   ! LAPACK CALL
 | 
						|
         T_OR_N = 'C'
 | 
						|
         CASE (4)
 | 
						|
              CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, &
 | 
						|
                   N, X, LDX, RWORK, Z, LDZ, W, LDW, &
 | 
						|
                   ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 )    ! LAPACK CALL
 | 
						|
              CALL ZLACPY( 'A', M, N, Z, LDZ, X, LDX )   ! LAPACK CALL
 | 
						|
              T_OR_N = 'N'
 | 
						|
              XSCL1 = RWORK(N+1)
 | 
						|
              XSCL2 = RWORK(N+2)
 | 
						|
              IF ( XSCL1 /=  XSCL2 ) THEN
 | 
						|
                 ! This is an exceptional situation. If the
 | 
						|
                 ! data matrices are not scaled and the
 | 
						|
                 ! largest singular value of X overflows.
 | 
						|
                 ! In that case ZGEJSV can return the SVD
 | 
						|
                 ! in scaled form. The scaling factor can be used
 | 
						|
                 ! to rescale the data (X and Y).
 | 
						|
                 CALL ZLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2  )
 | 
						|
              END IF
 | 
						|
      END SELECT
 | 
						|
!
 | 
						|
      IF ( INFO1 > 0 ) THEN
 | 
						|
         ! The SVD selected subroutine did not converge.
 | 
						|
         ! Return with an error code.
 | 
						|
         INFO = 2
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF ( RWORK(1) == ZERO ) THEN
 | 
						|
          ! The largest computed singular value of (scaled)
 | 
						|
          ! X is zero. Return error code -8
 | 
						|
          ! (the 8th input variable had an illegal value).
 | 
						|
          K = 0
 | 
						|
          INFO = -8
 | 
						|
          CALL XERBLA('ZGEDMD',-INFO)
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      !<3> Determine the numerical rank of the data
 | 
						|
      !    snapshots matrix X. This depends on the
 | 
						|
      !    parameters NRNK and TOL.
 | 
						|
 | 
						|
      SELECT CASE ( NRNK )
 | 
						|
          CASE ( -1 )
 | 
						|
               K = 1
 | 
						|
               DO i = 2, NUMRNK
 | 
						|
                 IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. &
 | 
						|
                      ( RWORK(i) <= SMALL ) ) EXIT
 | 
						|
                 K = K + 1
 | 
						|
               END DO
 | 
						|
          CASE ( -2 )
 | 
						|
               K = 1
 | 
						|
               DO i = 1, NUMRNK-1
 | 
						|
                 IF ( ( RWORK(i+1) <= RWORK(i)*TOL  ) .OR. &
 | 
						|
                      ( RWORK(i) <= SMALL ) ) EXIT
 | 
						|
                 K = K + 1
 | 
						|
               END DO
 | 
						|
          CASE DEFAULT
 | 
						|
               K = 1
 | 
						|
               DO i = 2, NRNK
 | 
						|
                  IF ( RWORK(i) <= SMALL ) EXIT
 | 
						|
                  K = K + 1
 | 
						|
               END DO
 | 
						|
          END SELECT
 | 
						|
      !   Now, U = X(1:M,1:K) is the SVD/POD basis for the
 | 
						|
      !   snapshot data in the input matrix X.
 | 
						|
 | 
						|
      !<4> Compute the Rayleigh quotient S = U^H * A * U.
 | 
						|
      !    Depending on the requested outputs, the computation
 | 
						|
      !    is organized to compute additional auxiliary
 | 
						|
      !    matrices (for the residuals and refinements).
 | 
						|
      !
 | 
						|
      !    In all formulas below, we need V_k*Sigma_k^(-1)
 | 
						|
      !    where either V_k is in W(1:N,1:K), or V_k^H is in
 | 
						|
      !    W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
 | 
						|
      IF ( LSAME(T_OR_N, 'N') ) THEN
 | 
						|
          DO i = 1, K
 | 
						|
           CALL ZDSCAL( N, ONE/RWORK(i), W(1,i), 1 )    ! BLAS CALL
 | 
						|
           ! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i)      ! INTRINSIC
 | 
						|
          END DO
 | 
						|
      ELSE
 | 
						|
          ! This non-unit stride access is due to the fact
 | 
						|
          ! that ZGESVD, ZGESVDQ and ZGESDD return the
 | 
						|
          ! adjoint matrix of the right singular vectors.
 | 
						|
          !DO i = 1, K
 | 
						|
          ! CALL ZDSCAL( N, ONE/RWORK(i), W(i,1), LDW )    ! BLAS CALL
 | 
						|
          ! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N)      ! INTRINSIC
 | 
						|
          !END DO
 | 
						|
          DO i = 1, K
 | 
						|
              RWORK(N+i) = ONE/RWORK(i)
 | 
						|
          END DO
 | 
						|
          DO j = 1, N
 | 
						|
             DO i = 1, K
 | 
						|
                 W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j)
 | 
						|
             END DO
 | 
						|
          END DO
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF ( WNTREF ) THEN
 | 
						|
         !
 | 
						|
         ! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
 | 
						|
         ! for computing the refined Ritz vectors
 | 
						|
         ! (optionally, outside ZGEDMD).
 | 
						|
          CALL ZGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, &
 | 
						|
                      LDW, ZZERO, Z, LDZ )                       ! BLAS CALL
 | 
						|
          ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='C'
 | 
						|
          ! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K))                   ! INTRINSIC, for T_OR_N=='N'
 | 
						|
          !
 | 
						|
          ! At this point Z contains
 | 
						|
          ! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
 | 
						|
          ! this is needed for computing the residuals.
 | 
						|
          ! This matrix is  returned in the array B and
 | 
						|
          ! it can be used to compute refined Ritz vectors.
 | 
						|
          CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB )   ! BLAS CALL
 | 
						|
          ! B(1:M,1:K) = Z(1:M,1:K)                  ! INTRINSIC
 | 
						|
 | 
						|
          CALL ZGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, &
 | 
						|
                      LDZ, ZZERO, S, LDS )                        ! BLAS CALL
 | 
						|
          ! S(1:K,1:K) = MATMUL(TRANSPOSE(CONJG(X(1:M,1:K))),Z(1:M,1:K)) ! INTRINSIC
 | 
						|
          ! At this point S = U^H * A * U is the Rayleigh quotient.
 | 
						|
      ELSE
 | 
						|
        ! A * U(:,1:K) is not explicitly needed and the
 | 
						|
        ! computation is organized differently. The Rayleigh
 | 
						|
        ! quotient is computed more efficiently.
 | 
						|
        CALL ZGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, &
 | 
						|
                   ZZERO, Z, LDZ )                                         ! BLAS CALL
 | 
						|
        ! Z(1:K,1:N) = MATMUL( TRANSPOSE(CONJG(X(1:M,1:K))), Y(1:M,1:N) )  ! INTRINSIC
 | 
						|
        !
 | 
						|
        CALL ZGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, &
 | 
						|
                    LDW, ZZERO, S, LDS )                         ! BLAS CALL
 | 
						|
        ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='T'
 | 
						|
        ! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K)))                 ! INTRINSIC, for T_OR_N=='N'
 | 
						|
        ! At this point S = U^H * A * U is the Rayleigh quotient.
 | 
						|
        ! If the residuals are requested, save scaled V_k into Z.
 | 
						|
        ! Recall that V_k or V_k^H is stored in W.
 | 
						|
        IF ( WNTRES .OR. WNTEX ) THEN
 | 
						|
          IF ( LSAME(T_OR_N, 'N') ) THEN
 | 
						|
              CALL ZLACPY( 'A', N, K, W, LDW, Z, LDZ )
 | 
						|
          ELSE
 | 
						|
              CALL ZLACPY( 'A', K, N, W, LDW, Z, LDZ )
 | 
						|
          END IF
 | 
						|
        END IF
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      !<5> Compute the Ritz values and (if requested) the
 | 
						|
      !   right eigenvectors of the Rayleigh quotient.
 | 
						|
      !
 | 
						|
      CALL ZGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, LDW, &
 | 
						|
            W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 )  ! LAPACK CALL
 | 
						|
      !
 | 
						|
      ! W(1:K,1:K) contains the eigenvectors of the Rayleigh
 | 
						|
      ! quotient.  See the description of Z.
 | 
						|
      ! Also, see the description of ZGEEV.
 | 
						|
      IF ( INFO1 > 0 ) THEN
 | 
						|
         ! ZGEEV failed to compute the eigenvalues and
 | 
						|
         ! eigenvectors of the Rayleigh quotient.
 | 
						|
         INFO = 3
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      ! <6> Compute the eigenvectors (if requested) and,
 | 
						|
      ! the residuals (if requested).
 | 
						|
      !
 | 
						|
      IF ( WNTVEC .OR. WNTEX ) THEN
 | 
						|
      IF ( WNTRES ) THEN
 | 
						|
          IF ( WNTREF ) THEN
 | 
						|
            ! Here, if the refinement is requested, we have
 | 
						|
            ! A*U(:,1:K) already computed and stored in Z.
 | 
						|
            ! For the residuals, need Y = A * U(:,1;K) * W.
 | 
						|
            CALL ZGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, &
 | 
						|
                       LDW, ZZERO, Y, LDY )               ! BLAS CALL
 | 
						|
            ! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K)        ! INTRINSIC
 | 
						|
            ! This frees Z; Y contains A * U(:,1:K) * W.
 | 
						|
          ELSE
 | 
						|
            ! Compute S = V_k * Sigma_k^(-1) * W, where
 | 
						|
            ! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z
 | 
						|
            CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
 | 
						|
                       W, LDW, ZZERO, S, LDS )
 | 
						|
            ! Then, compute Z = Y * S =
 | 
						|
            ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
 | 
						|
            ! = A * U(:,1:K) * W(1:K,1:K)
 | 
						|
            CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
 | 
						|
                       LDS, ZZERO, Z, LDZ )
 | 
						|
            ! Save a copy of Z into Y and free Z for holding
 | 
						|
            ! the Ritz vectors.
 | 
						|
            CALL ZLACPY( 'A', M, K, Z, LDZ, Y, LDY )
 | 
						|
            IF ( WNTEX ) CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB )
 | 
						|
          END IF
 | 
						|
      ELSE IF ( WNTEX ) THEN
 | 
						|
          ! Compute S = V_k * Sigma_k^(-1) * W, where
 | 
						|
            ! V_k * Sigma_k^(-1) is stored in Z
 | 
						|
            CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, &
 | 
						|
                       W, LDW, ZZERO, S, LDS )
 | 
						|
            ! Then, compute Z = Y * S =
 | 
						|
            ! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
 | 
						|
            ! = A * U(:,1:K) * W(1:K,1:K)
 | 
						|
            CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
 | 
						|
                       LDS, ZZERO, B, LDB )
 | 
						|
            ! The above call replaces the following two calls
 | 
						|
            ! that were used in the developing-testing phase.
 | 
						|
            ! CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, &
 | 
						|
            !           LDS, ZZERO, Z, LDZ)
 | 
						|
            ! Save a copy of Z into B and free Z for holding
 | 
						|
            ! the Ritz vectors.
 | 
						|
            ! CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB )
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      ! Compute the Ritz vectors
 | 
						|
      IF ( WNTVEC ) CALL ZGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, &
 | 
						|
                   ZZERO, Z, LDZ )                          ! BLAS CALL
 | 
						|
      ! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K))         ! INTRINSIC
 | 
						|
!
 | 
						|
      IF ( WNTRES ) THEN
 | 
						|
         DO i = 1, K
 | 
						|
            CALL ZAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 )       ! BLAS CALL
 | 
						|
            ! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i)            ! INTRINSIC
 | 
						|
            RES(i) = DZNRM2( M, Y(1,i), 1 )                       ! BLAS CALL
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
      END IF
 | 
						|
!
 | 
						|
      IF ( WHTSVD == 4 ) THEN
 | 
						|
          RWORK(N+1) = XSCL1
 | 
						|
          RWORK(N+2) = XSCL2
 | 
						|
      END IF
 | 
						|
!
 | 
						|
!     Successful exit.
 | 
						|
      IF ( .NOT. BADXY ) THEN
 | 
						|
         INFO = 0
 | 
						|
      ELSE
 | 
						|
         ! A warning on possible data inconsistency.
 | 
						|
         ! This should be a rare event.
 | 
						|
         INFO = 4
 | 
						|
      END IF
 | 
						|
!............................................................
 | 
						|
      RETURN
 | 
						|
!     ......
 | 
						|
      END SUBROUTINE ZGEDMD
 | 
						|
 |