1677 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1677 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle_() continue;
 | 
						|
#define myceiling_(w) {ceil(w)}
 | 
						|
#define myhuge_(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c_n1 = -1;
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c__0 = 0;
 | 
						|
 | 
						|
/* Subroutine */ int zgedmd_(char *jobs, char *jobz, char *jobr, char *jobf, 
 | 
						|
	integer *whtsvd, integer *m, integer *n, doublecomplex *x, integer *
 | 
						|
	ldx, doublecomplex *y, integer *ldy, integer *nrnk, doublereal *tol, 
 | 
						|
	integer *k, doublecomplex *eigs, doublecomplex *z__, integer *ldz, 
 | 
						|
	doublereal *res, doublecomplex *b, integer *ldb, doublecomplex *w, 
 | 
						|
	integer *ldw, doublecomplex *s, integer *lds, doublecomplex *zwork, 
 | 
						|
	integer *lzwork, doublereal *rwork, integer *lrwork, integer *iwork, 
 | 
						|
	integer *liwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer x_dim1, x_offset, y_dim1, y_offset, z_dim1, z_offset, b_dim1, 
 | 
						|
	    b_offset, w_dim1, w_offset, s_dim1, s_offset, i__1, i__2, i__3, 
 | 
						|
	    i__4, i__5;
 | 
						|
    doublereal d__1, d__2;
 | 
						|
    doublecomplex z__1, z__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    doublecomplex zone;
 | 
						|
    doublereal zero, ssum;
 | 
						|
    integer info1, info2;
 | 
						|
    doublereal xscl1, xscl2;
 | 
						|
    integer i__, j;
 | 
						|
    doublereal scale;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    logical badxy;
 | 
						|
    doublereal small;
 | 
						|
    extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublecomplex *, doublecomplex *, integer *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | 
						|
	    integer *);
 | 
						|
    char jobzl[1];
 | 
						|
    extern /* Subroutine */ int zgeev_(char *, char *, integer *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | 
						|
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
 | 
						|
	     doublereal *, integer *);
 | 
						|
    logical wntex;
 | 
						|
    doublecomplex zzero;
 | 
						|
    extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *, 
 | 
						|
	    doublecomplex *, integer *, doublecomplex *, integer *);
 | 
						|
    extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_(
 | 
						|
	    char *);
 | 
						|
    extern logical disnan_(doublereal *);
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *);
 | 
						|
    char t_or_n__[1];
 | 
						|
    extern /* Subroutine */ int zdscal_(integer *, doublereal *, 
 | 
						|
	    doublecomplex *, integer *), zgesdd_(char *, integer *, integer *,
 | 
						|
	     doublecomplex *, integer *, doublereal *, doublecomplex *, 
 | 
						|
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
 | 
						|
	     doublereal *, integer *, integer *), zlascl_(char *, 
 | 
						|
	    integer *, integer *, doublereal *, doublereal *, integer *, 
 | 
						|
	    integer *, doublecomplex *, integer *, integer *);
 | 
						|
    extern integer izamax_(integer *, doublecomplex *, integer *);
 | 
						|
    logical sccolx, sccoly;
 | 
						|
    integer lwrsdd, mwrsdd;
 | 
						|
    extern /* Subroutine */ int zgesvd_(char *, char *, integer *, integer *, 
 | 
						|
	    doublecomplex *, integer *, doublereal *, doublecomplex *, 
 | 
						|
	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
 | 
						|
	     doublereal *, integer *), zlacpy_(char *, 
 | 
						|
	    integer *, integer *, doublecomplex *, integer *, doublecomplex *,
 | 
						|
	     integer *);
 | 
						|
    integer iminwr;
 | 
						|
    logical wntref, wntvec;
 | 
						|
    doublereal rootsc;
 | 
						|
    integer lwrkev, mlwork, mwrkev, numrnk, olwork, lwrsvd, mwrsvd, mlrwrk;
 | 
						|
    logical lquery, wntres;
 | 
						|
    char jsvopt[1];
 | 
						|
    integer lwrsvj, mwrsvj;
 | 
						|
    doublereal rdummy[2];
 | 
						|
    extern /* Subroutine */ int zgejsv_(char *, char *, char *, char *, char *
 | 
						|
	    , char *, integer *, integer *, doublecomplex *, integer *, 
 | 
						|
	    doublereal *, doublecomplex *, integer *, doublecomplex *, 
 | 
						|
	    integer *, doublecomplex *, integer *, doublereal *, integer *, 
 | 
						|
	    integer *, integer *), zlassq_(integer *, doublecomplex *, integer *, 
 | 
						|
	    doublereal *, doublereal *), mecago_();
 | 
						|
    integer lwrsvq, mwrsvq;
 | 
						|
    doublereal ofl, one;
 | 
						|
    extern /* Subroutine */ int zgesvdq_(char *, char *, char *, char *, char 
 | 
						|
	    *, integer *, integer *, doublecomplex *, integer *, doublereal *,
 | 
						|
	     doublecomplex *, integer *, doublecomplex *, integer *, integer *
 | 
						|
	    , integer *, integer *, doublecomplex *, integer *, doublereal *, 
 | 
						|
	    integer *, integer *);
 | 
						|
 | 
						|
/* March 2023 */
 | 
						|
/* ..... */
 | 
						|
/*      USE                   iso_fortran_env */
 | 
						|
/*      INTEGER, PARAMETER :: WP = real64 */
 | 
						|
/* ..... */
 | 
						|
/*     Scalar arguments */
 | 
						|
/*     Array arguments */
 | 
						|
/* ............................................................ */
 | 
						|
/*     Purpose */
 | 
						|
/*     ======= */
 | 
						|
/*     ZGEDMD computes the Dynamic Mode Decomposition (DMD) for */
 | 
						|
/*     a pair of data snapshot matrices. For the input matrices */
 | 
						|
/*     X and Y such that Y = A*X with an unaccessible matrix */
 | 
						|
/*     A, ZGEDMD computes a certain number of Ritz pairs of A using */
 | 
						|
/*     the standard Rayleigh-Ritz extraction from a subspace of */
 | 
						|
/*     range(X) that is determined using the leading left singular */
 | 
						|
/*     vectors of X. Optionally, ZGEDMD returns the residuals */
 | 
						|
/*     of the computed Ritz pairs, the information needed for */
 | 
						|
/*     a refinement of the Ritz vectors, or the eigenvectors of */
 | 
						|
/*     the Exact DMD. */
 | 
						|
/*     For further details see the references listed */
 | 
						|
/*     below. For more details of the implementation see [3]. */
 | 
						|
 | 
						|
/*     References */
 | 
						|
/*     ========== */
 | 
						|
/*     [1] P. Schmid: Dynamic mode decomposition of numerical */
 | 
						|
/*         and experimental data, */
 | 
						|
/*         Journal of Fluid Mechanics 656, 5-28, 2010. */
 | 
						|
/*     [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal */
 | 
						|
/*         decompositions: analysis and enhancements, */
 | 
						|
/*         SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. */
 | 
						|
/*     [3] Z. Drmac: A LAPACK implementation of the Dynamic */
 | 
						|
/*         Mode Decomposition I. Technical report. AIMDyn Inc. */
 | 
						|
/*         and LAPACK Working Note 298. */
 | 
						|
/*     [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. */
 | 
						|
/*         Brunton, N. Kutz: On Dynamic Mode Decomposition: */
 | 
						|
/*         Theory and Applications, Journal of Computational */
 | 
						|
/*         Dynamics 1(2), 391 -421, 2014. */
 | 
						|
 | 
						|
/* ...................................................................... */
 | 
						|
/*     Developed and supported by: */
 | 
						|
/*     =========================== */
 | 
						|
/*     Developed and coded by Zlatko Drmac, Faculty of Science, */
 | 
						|
/*     University of Zagreb;  drmac@math.hr */
 | 
						|
/*     In cooperation with */
 | 
						|
/*     AIMdyn Inc., Santa Barbara, CA. */
 | 
						|
/*     and supported by */
 | 
						|
/*     - DARPA SBIR project "Koopman Operator-Based Forecasting */
 | 
						|
/*     for Nonstationary Processes from Near-Term, Limited */
 | 
						|
/*     Observational Data" Contract No: W31P4Q-21-C-0007 */
 | 
						|
/*     - DARPA PAI project "Physics-Informed Machine Learning */
 | 
						|
/*     Methodologies" Contract No: HR0011-18-9-0033 */
 | 
						|
/*     - DARPA MoDyL project "A Data-Driven, Operator-Theoretic */
 | 
						|
/*     Framework for Space-Time Analysis of Process Dynamics" */
 | 
						|
/*     Contract No: HR0011-16-C-0116 */
 | 
						|
/*     Any opinions, findings and conclusions or recommendations */
 | 
						|
/*     expressed in this material are those of the author and */
 | 
						|
/*     do not necessarily reflect the views of the DARPA SBIR */
 | 
						|
/*     Program Office */
 | 
						|
/* ============================================================ */
 | 
						|
/*     Distribution Statement A: */
 | 
						|
/*     Approved for Public Release, Distribution Unlimited. */
 | 
						|
/*     Cleared by DARPA on September 29, 2022 */
 | 
						|
/* ============================================================ */
 | 
						|
/* ............................................................ */
 | 
						|
/*     Arguments */
 | 
						|
/*     ========= */
 | 
						|
/*     JOBS (input) CHARACTER*1 */
 | 
						|
/*     Determines whether the initial data snapshots are scaled */
 | 
						|
/*     by a diagonal matrix. */
 | 
						|
/*     'S' :: The data snapshots matrices X and Y are multiplied */
 | 
						|
/*            with a diagonal matrix D so that X*D has unit */
 | 
						|
/*            nonzero columns (in the Euclidean 2-norm) */
 | 
						|
/*     'C' :: The snapshots are scaled as with the 'S' option. */
 | 
						|
/*            If it is found that an i-th column of X is zero */
 | 
						|
/*            vector and the corresponding i-th column of Y is */
 | 
						|
/*            non-zero, then the i-th column of Y is set to */
 | 
						|
/*            zero and a warning flag is raised. */
 | 
						|
/*     'Y' :: The data snapshots matrices X and Y are multiplied */
 | 
						|
/*            by a diagonal matrix D so that Y*D has unit */
 | 
						|
/*            nonzero columns (in the Euclidean 2-norm) */
 | 
						|
/*     'N' :: No data scaling. */
 | 
						|
/* ..... */
 | 
						|
/*     JOBZ (input) CHARACTER*1 */
 | 
						|
/*     Determines whether the eigenvectors (Koopman modes) will */
 | 
						|
/*     be computed. */
 | 
						|
/*     'V' :: The eigenvectors (Koopman modes) will be computed */
 | 
						|
/*            and returned in the matrix Z. */
 | 
						|
/*            See the description of Z. */
 | 
						|
/*     'F' :: The eigenvectors (Koopman modes) will be returned */
 | 
						|
/*            in factored form as the product X(:,1:K)*W, where X */
 | 
						|
/*            contains a POD basis (leading left singular vectors */
 | 
						|
/*            of the data matrix X) and W contains the eigenvectors */
 | 
						|
/*            of the corresponding Rayleigh quotient. */
 | 
						|
/*            See the descriptions of K, X, W, Z. */
 | 
						|
/*     'N' :: The eigenvectors are not computed. */
 | 
						|
/* ..... */
 | 
						|
/*     JOBR (input) CHARACTER*1 */
 | 
						|
/*     Determines whether to compute the residuals. */
 | 
						|
/*     'R' :: The residuals for the computed eigenpairs will be */
 | 
						|
/*            computed and stored in the array RES. */
 | 
						|
/*            See the description of RES. */
 | 
						|
/*            For this option to be legal, JOBZ must be 'V'. */
 | 
						|
/*     'N' :: The residuals are not computed. */
 | 
						|
/* ..... */
 | 
						|
/*     JOBF (input) CHARACTER*1 */
 | 
						|
/*     Specifies whether to store information needed for post- */
 | 
						|
/*     processing (e.g. computing refined Ritz vectors) */
 | 
						|
/*     'R' :: The matrix needed for the refinement of the Ritz */
 | 
						|
/*            vectors is computed and stored in the array B. */
 | 
						|
/*            See the description of B. */
 | 
						|
/*     'E' :: The unscaled eigenvectors of the Exact DMD are */
 | 
						|
/*            computed and returned in the array B. See the */
 | 
						|
/*            description of B. */
 | 
						|
/*     'N' :: No eigenvector refinement data is computed. */
 | 
						|
/* ..... */
 | 
						|
/*     WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } */
 | 
						|
/*     Allows for a selection of the SVD algorithm from the */
 | 
						|
/*     LAPACK library. */
 | 
						|
/*     1 :: ZGESVD (the QR SVD algorithm) */
 | 
						|
/*     2 :: ZGESDD (the Divide and Conquer algorithm; if enough */
 | 
						|
/*          workspace available, this is the fastest option) */
 | 
						|
/*     3 :: ZGESVDQ (the preconditioned QR SVD  ; this and 4 */
 | 
						|
/*          are the most accurate options) */
 | 
						|
/*     4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3 */
 | 
						|
/*          are the most accurate options) */
 | 
						|
/*     For the four methods above, a significant difference in */
 | 
						|
/*     the accuracy of small singular values is possible if */
 | 
						|
/*     the snapshots vary in norm so that X is severely */
 | 
						|
/*     ill-conditioned. If small (smaller than EPS*||X||) */
 | 
						|
/*     singular values are of interest and JOBS=='N',  then */
 | 
						|
/*     the options (3, 4) give the most accurate results, where */
 | 
						|
/*     the option 4 is slightly better and with stronger */
 | 
						|
/*     theoretical background. */
 | 
						|
/*     If JOBS=='S', i.e. the columns of X will be normalized, */
 | 
						|
/*     then all methods give nearly equally accurate results. */
 | 
						|
/* ..... */
 | 
						|
/*     M (input) INTEGER, M>= 0 */
 | 
						|
/*     The state space dimension (the row dimension of X, Y). */
 | 
						|
/* ..... */
 | 
						|
/*     N (input) INTEGER, 0 <= N <= M */
 | 
						|
/*     The number of data snapshot pairs */
 | 
						|
/*     (the number of columns of X and Y). */
 | 
						|
/* ..... */
 | 
						|
/*     X (input/output) COMPLEX(KIND=WP) M-by-N array */
 | 
						|
/*   > On entry, X contains the data snapshot matrix X. It is */
 | 
						|
/*     assumed that the column norms of X are in the range of */
 | 
						|
/*     the normalized floating point numbers. */
 | 
						|
/*   < On exit, the leading K columns of X contain a POD basis, */
 | 
						|
/*     i.e. the leading K left singular vectors of the input */
 | 
						|
/*     data matrix X, U(:,1:K). All N columns of X contain all */
 | 
						|
/*     left singular vectors of the input matrix X. */
 | 
						|
/*     See the descriptions of K, Z and W. */
 | 
						|
/* ..... */
 | 
						|
/*     LDX (input) INTEGER, LDX >= M */
 | 
						|
/*     The leading dimension of the array X. */
 | 
						|
/* ..... */
 | 
						|
/*     Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array */
 | 
						|
/*   > On entry, Y contains the data snapshot matrix Y */
 | 
						|
/*   < On exit, */
 | 
						|
/*     If JOBR == 'R', the leading K columns of Y  contain */
 | 
						|
/*     the residual vectors for the computed Ritz pairs. */
 | 
						|
/*     See the description of RES. */
 | 
						|
/*     If JOBR == 'N', Y contains the original input data, */
 | 
						|
/*                     scaled according to the value of JOBS. */
 | 
						|
/* ..... */
 | 
						|
/*     LDY (input) INTEGER , LDY >= M */
 | 
						|
/*     The leading dimension of the array Y. */
 | 
						|
/* ..... */
 | 
						|
/*     NRNK (input) INTEGER */
 | 
						|
/*     Determines the mode how to compute the numerical rank, */
 | 
						|
/*     i.e. how to truncate small singular values of the input */
 | 
						|
/*     matrix X. On input, if */
 | 
						|
/*     NRNK = -1 :: i-th singular value sigma(i) is truncated */
 | 
						|
/*                  if sigma(i) <= TOL*sigma(1) */
 | 
						|
/*                  This option is recommended. */
 | 
						|
/*     NRNK = -2 :: i-th singular value sigma(i) is truncated */
 | 
						|
/*                  if sigma(i) <= TOL*sigma(i-1) */
 | 
						|
/*                  This option is included for R&D purposes. */
 | 
						|
/*                  It requires highly accurate SVD, which */
 | 
						|
/*                  may not be feasible. */
 | 
						|
/*     The numerical rank can be enforced by using positive */
 | 
						|
/*     value of NRNK as follows: */
 | 
						|
/*     0 < NRNK <= N :: at most NRNK largest singular values */
 | 
						|
/*     will be used. If the number of the computed nonzero */
 | 
						|
/*     singular values is less than NRNK, then only those */
 | 
						|
/*     nonzero values will be used and the actually used */
 | 
						|
/*     dimension is less than NRNK. The actual number of */
 | 
						|
/*     the nonzero singular values is returned in the variable */
 | 
						|
/*     K. See the descriptions of TOL and  K. */
 | 
						|
/* ..... */
 | 
						|
/*     TOL (input) REAL(KIND=WP), 0 <= TOL < 1 */
 | 
						|
/*     The tolerance for truncating small singular values. */
 | 
						|
/*     See the description of NRNK. */
 | 
						|
/* ..... */
 | 
						|
/*     K (output) INTEGER,  0 <= K <= N */
 | 
						|
/*     The dimension of the POD basis for the data snapshot */
 | 
						|
/*     matrix X and the number of the computed Ritz pairs. */
 | 
						|
/*     The value of K is determined according to the rule set */
 | 
						|
/*     by the parameters NRNK and TOL. */
 | 
						|
/*     See the descriptions of NRNK and TOL. */
 | 
						|
/* ..... */
 | 
						|
/*     EIGS (output) COMPLEX(KIND=WP) N-by-1 array */
 | 
						|
/*     The leading K (K<=N) entries of EIGS contain */
 | 
						|
/*     the computed eigenvalues (Ritz values). */
 | 
						|
/*     See the descriptions of K, and Z. */
 | 
						|
/* ..... */
 | 
						|
/*     Z (workspace/output) COMPLEX(KIND=WP)  M-by-N array */
 | 
						|
/*     If JOBZ =='V' then Z contains the  Ritz vectors.  Z(:,i) */
 | 
						|
/*     is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. */
 | 
						|
/*     If JOBZ == 'F', then the Z(:,i)'s are given implicitly as */
 | 
						|
/*     the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i) */
 | 
						|
/*     is an eigenvector corresponding to EIGS(i). The columns */
 | 
						|
/*     of W(1:k,1:K) are the computed eigenvectors of the */
 | 
						|
/*     K-by-K Rayleigh quotient. */
 | 
						|
/*     See the descriptions of EIGS, X and W. */
 | 
						|
/* ..... */
 | 
						|
/*     LDZ (input) INTEGER , LDZ >= M */
 | 
						|
/*     The leading dimension of the array Z. */
 | 
						|
/* ..... */
 | 
						|
/*     RES (output) REAL(KIND=WP) N-by-1 array */
 | 
						|
/*     RES(1:K) contains the residuals for the K computed */
 | 
						|
/*     Ritz pairs, */
 | 
						|
/*     RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. */
 | 
						|
/*     See the description of EIGS and Z. */
 | 
						|
/* ..... */
 | 
						|
/*     B (output) COMPLEX(KIND=WP)  M-by-N array. */
 | 
						|
/*     IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can */
 | 
						|
/*     be used for computing the refined vectors; see further */
 | 
						|
/*     details in the provided references. */
 | 
						|
/*     If JOBF == 'E', B(1:M,1:K) contains */
 | 
						|
/*     A*U(:,1:K)*W(1:K,1:K), which are the vectors from the */
 | 
						|
/*     Exact DMD, up to scaling by the inverse eigenvalues. */
 | 
						|
/*     If JOBF =='N', then B is not referenced. */
 | 
						|
/*     See the descriptions of X, W, K. */
 | 
						|
/* ..... */
 | 
						|
/*     LDB (input) INTEGER, LDB >= M */
 | 
						|
/*     The leading dimension of the array B. */
 | 
						|
/* ..... */
 | 
						|
/*     W (workspace/output) COMPLEX(KIND=WP) N-by-N array */
 | 
						|
/*     On exit, W(1:K,1:K) contains the K computed */
 | 
						|
/*     eigenvectors of the matrix Rayleigh quotient. */
 | 
						|
/*     The Ritz vectors (returned in Z) are the */
 | 
						|
/*     product of X (containing a POD basis for the input */
 | 
						|
/*     matrix X) and W. See the descriptions of K, S, X and Z. */
 | 
						|
/*     W is also used as a workspace to temporarily store the */
 | 
						|
/*     right singular vectors of X. */
 | 
						|
/* ..... */
 | 
						|
/*     LDW (input) INTEGER, LDW >= N */
 | 
						|
/*     The leading dimension of the array W. */
 | 
						|
/* ..... */
 | 
						|
/*     S (workspace/output) COMPLEX(KIND=WP) N-by-N array */
 | 
						|
/*     The array S(1:K,1:K) is used for the matrix Rayleigh */
 | 
						|
/*     quotient. This content is overwritten during */
 | 
						|
/*     the eigenvalue decomposition by ZGEEV. */
 | 
						|
/*     See the description of K. */
 | 
						|
/* ..... */
 | 
						|
/*     LDS (input) INTEGER, LDS >= N */
 | 
						|
/*     The leading dimension of the array S. */
 | 
						|
/* ..... */
 | 
						|
/*     ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array */
 | 
						|
/*     ZWORK is used as complex workspace in the complex SVD, as */
 | 
						|
/*     specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing */
 | 
						|
/*     the eigenvalues of a Rayleigh quotient. */
 | 
						|
/*     If the call to ZGEDMD is only workspace query, then */
 | 
						|
/*     ZWORK(1) contains the minimal complex workspace length and */
 | 
						|
/*     ZWORK(2) is the optimal complex workspace length. */
 | 
						|
/*     Hence, the length of work is at least 2. */
 | 
						|
/*     See the description of LZWORK. */
 | 
						|
/* ..... */
 | 
						|
/*     LZWORK (input) INTEGER */
 | 
						|
/*     The minimal length of the workspace vector ZWORK. */
 | 
						|
/*     LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV), */
 | 
						|
/*     where LZWORK_ZGEEV = MAX( 1, 2*N )  and the minimal */
 | 
						|
/*     LZWORK_SVD is calculated as follows */
 | 
						|
/*     If WHTSVD == 1 :: ZGESVD :: */
 | 
						|
/*        LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N)) */
 | 
						|
/*     If WHTSVD == 2 :: ZGESDD :: */
 | 
						|
/*        LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) */
 | 
						|
/*     If WHTSVD == 3 :: ZGESVDQ :: */
 | 
						|
/*        LZWORK_SVD = obtainable by a query */
 | 
						|
/*     If WHTSVD == 4 :: ZGEJSV :: */
 | 
						|
/*        LZWORK_SVD = obtainable by a query */
 | 
						|
/*     If on entry LZWORK = -1, then a workspace query is */
 | 
						|
/*     assumed and the procedure only computes the minimal */
 | 
						|
/*     and the optimal workspace lengths and returns them in */
 | 
						|
/*     LZWORK(1) and LZWORK(2), respectively. */
 | 
						|
/* ..... */
 | 
						|
/*     RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array */
 | 
						|
/*     On exit, RWORK(1:N) contains the singular values of */
 | 
						|
/*     X (for JOBS=='N') or column scaled X (JOBS=='S', 'C'). */
 | 
						|
/*     If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain */
 | 
						|
/*     scaling factor RWORK(N+2)/RWORK(N+1) used to scale X */
 | 
						|
/*     and Y to avoid overflow in the SVD of X. */
 | 
						|
/*     This may be of interest if the scaling option is off */
 | 
						|
/*     and as many as possible smallest eigenvalues are */
 | 
						|
/*     desired to the highest feasible accuracy. */
 | 
						|
/*     If the call to ZGEDMD is only workspace query, then */
 | 
						|
/*     RWORK(1) contains the minimal workspace length. */
 | 
						|
/*     See the description of LRWORK. */
 | 
						|
/* ..... */
 | 
						|
/*     LRWORK (input) INTEGER */
 | 
						|
/*     The minimal length of the workspace vector RWORK. */
 | 
						|
/*     LRWORK is calculated as follows: */
 | 
						|
/*     LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where */
 | 
						|
/*     LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace */
 | 
						|
/*     for the SVD subroutine determined by the input parameter */
 | 
						|
/*     WHTSVD. */
 | 
						|
/*     If WHTSVD == 1 :: ZGESVD :: */
 | 
						|
/*        LRWORK_SVD = 5*MIN(M,N) */
 | 
						|
/*     If WHTSVD == 2 :: ZGESDD :: */
 | 
						|
/*        LRWORK_SVD =  MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), */
 | 
						|
/*        2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) */
 | 
						|
/*     If WHTSVD == 3 :: ZGESVDQ :: */
 | 
						|
/*        LRWORK_SVD = obtainable by a query */
 | 
						|
/*     If WHTSVD == 4 :: ZGEJSV :: */
 | 
						|
/*        LRWORK_SVD = obtainable by a query */
 | 
						|
/*     If on entry LRWORK = -1, then a workspace query is */
 | 
						|
/*     assumed and the procedure only computes the minimal */
 | 
						|
/*     real workspace length and returns it in RWORK(1). */
 | 
						|
/* ..... */
 | 
						|
/*     IWORK (workspace/output) INTEGER LIWORK-by-1 array */
 | 
						|
/*     Workspace that is required only if WHTSVD equals */
 | 
						|
/*     2 , 3 or 4. (See the description of WHTSVD). */
 | 
						|
/*     If on entry LWORK =-1 or LIWORK=-1, then the */
 | 
						|
/*     minimal length of IWORK is computed and returned in */
 | 
						|
/*     IWORK(1). See the description of LIWORK. */
 | 
						|
/* ..... */
 | 
						|
/*     LIWORK (input) INTEGER */
 | 
						|
/*     The minimal length of the workspace vector IWORK. */
 | 
						|
/*     If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 */
 | 
						|
/*     If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) */
 | 
						|
/*     If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) */
 | 
						|
/*     If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) */
 | 
						|
/*     If on entry LIWORK = -1, then a workspace query is */
 | 
						|
/*     assumed and the procedure only computes the minimal */
 | 
						|
/*     and the optimal workspace lengths for  ZWORK, RWORK and */
 | 
						|
/*     IWORK. See the descriptions of ZWORK, RWORK and IWORK. */
 | 
						|
/* ..... */
 | 
						|
/*     INFO (output) INTEGER */
 | 
						|
/*     -i < 0 :: On entry, the i-th argument had an */
 | 
						|
/*               illegal value */
 | 
						|
/*        = 0 :: Successful return. */
 | 
						|
/*        = 1 :: Void input. Quick exit (M=0 or N=0). */
 | 
						|
/*        = 2 :: The SVD computation of X did not converge. */
 | 
						|
/*               Suggestion: Check the input data and/or */
 | 
						|
/*               repeat with different WHTSVD. */
 | 
						|
/*        = 3 :: The computation of the eigenvalues did not */
 | 
						|
/*               converge. */
 | 
						|
/*        = 4 :: If data scaling was requested on input and */
 | 
						|
/*               the procedure found inconsistency in the data */
 | 
						|
/*               such that for some column index i, */
 | 
						|
/*               X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set */
 | 
						|
/*               to zero if JOBS=='C'. The computation proceeds */
 | 
						|
/*               with original or modified data and warning */
 | 
						|
/*               flag is set with INFO=4. */
 | 
						|
/* ............................................................. */
 | 
						|
/* ............................................................. */
 | 
						|
/*     Parameters */
 | 
						|
/*     ~~~~~~~~~~ */
 | 
						|
/*     Local scalars */
 | 
						|
/*     ~~~~~~~~~~~~~ */
 | 
						|
 | 
						|
/*     Local arrays */
 | 
						|
/*     ~~~~~~~~~~~~ */
 | 
						|
/*     External functions (BLAS and LAPACK) */
 | 
						|
/*     ~~~~~~~~~~~~~~~~~ */
 | 
						|
/*     External subroutines (BLAS and LAPACK) */
 | 
						|
/*     ~~~~~~~~~~~~~~~~~~~~ */
 | 
						|
/*     Intrinsic functions */
 | 
						|
/*     ~~~~~~~~~~~~~~~~~~~ */
 | 
						|
/* ............................................................ */
 | 
						|
    /* Parameter adjustments */
 | 
						|
    x_dim1 = *ldx;
 | 
						|
    x_offset = 1 + x_dim1 * 1;
 | 
						|
    x -= x_offset;
 | 
						|
    y_dim1 = *ldy;
 | 
						|
    y_offset = 1 + y_dim1 * 1;
 | 
						|
    y -= y_offset;
 | 
						|
    --eigs;
 | 
						|
    z_dim1 = *ldz;
 | 
						|
    z_offset = 1 + z_dim1 * 1;
 | 
						|
    z__ -= z_offset;
 | 
						|
    --res;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    w_dim1 = *ldw;
 | 
						|
    w_offset = 1 + w_dim1 * 1;
 | 
						|
    w -= w_offset;
 | 
						|
    s_dim1 = *lds;
 | 
						|
    s_offset = 1 + s_dim1 * 1;
 | 
						|
    s -= s_offset;
 | 
						|
    --zwork;
 | 
						|
    --rwork;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    zero = 0.f;
 | 
						|
    one = 1.f;
 | 
						|
    zzero.r = 0.f, zzero.i = 0.f;
 | 
						|
    zone.r = 1.f, zone.i = 0.f;
 | 
						|
 | 
						|
/*    Test the input arguments */
 | 
						|
 | 
						|
    wntres = lsame_(jobr, "R");
 | 
						|
    sccolx = lsame_(jobs, "S") || lsame_(jobs, "C");
 | 
						|
    sccoly = lsame_(jobs, "Y");
 | 
						|
    wntvec = lsame_(jobz, "V");
 | 
						|
    wntref = lsame_(jobf, "R");
 | 
						|
    wntex = lsame_(jobf, "E");
 | 
						|
    *info = 0;
 | 
						|
    lquery = *lzwork == -1 || *liwork == -1 || *lrwork == -1;
 | 
						|
 | 
						|
    if (! (sccolx || sccoly || lsame_(jobs, "N"))) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! (wntvec || lsame_(jobz, "N") || lsame_(
 | 
						|
	    jobz, "F"))) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (! (wntres || lsame_(jobr, "N")) || 
 | 
						|
	    wntres && ! wntvec) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (! (wntref || wntex || lsame_(jobf, "N")))
 | 
						|
	     {
 | 
						|
	*info = -4;
 | 
						|
    } else if (! (*whtsvd == 1 || *whtsvd == 2 || *whtsvd == 3 || *whtsvd == 
 | 
						|
	    4)) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*m < 0) {
 | 
						|
	*info = -6;
 | 
						|
    } else if (*n < 0 || *n > *m) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*ldx < *m) {
 | 
						|
	*info = -9;
 | 
						|
    } else if (*ldy < *m) {
 | 
						|
	*info = -11;
 | 
						|
    } else if (! (*nrnk == -2 || *nrnk == -1 || *nrnk >= 1 && *nrnk <= *n)) {
 | 
						|
	*info = -12;
 | 
						|
    } else if (*tol < zero || *tol >= one) {
 | 
						|
	*info = -13;
 | 
						|
    } else if (*ldz < *m) {
 | 
						|
	*info = -17;
 | 
						|
    } else if ((wntref || wntex) && *ldb < *m) {
 | 
						|
	*info = -20;
 | 
						|
    } else if (*ldw < *n) {
 | 
						|
	*info = -22;
 | 
						|
    } else if (*lds < *n) {
 | 
						|
	*info = -24;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
/* Compute the minimal and the optimal workspace */
 | 
						|
/* requirements. Simulate running the code and */
 | 
						|
/* determine minimal and optimal sizes of the */
 | 
						|
/* workspace at any moment of the run. */
 | 
						|
	if (*n == 0) {
 | 
						|
/* Quick return. All output except K is void. */
 | 
						|
/* INFO=1 signals the void input. */
 | 
						|
/* In case of a workspace query, the default */
 | 
						|
/* minimal workspace lengths are returned. */
 | 
						|
	    if (lquery) {
 | 
						|
		iwork[1] = 1;
 | 
						|
		rwork[1] = 1.;
 | 
						|
		zwork[1].r = 2., zwork[1].i = 0.;
 | 
						|
		zwork[2].r = 2., zwork[2].i = 0.;
 | 
						|
	    } else {
 | 
						|
		*k = 0;
 | 
						|
	    }
 | 
						|
	    *info = 1;
 | 
						|
	    return 0;
 | 
						|
	}
 | 
						|
	iminwr = 1;
 | 
						|
	mlrwrk = f2cmax(1,*n);
 | 
						|
	mlwork = 2;
 | 
						|
	olwork = 2;
 | 
						|
/*         SELECT CASE ( WHTSVD ) */
 | 
						|
	if (*whtsvd == 1) {
 | 
						|
/* The following is specified as the minimal */
 | 
						|
/* length of WORK in the definition of ZGESVD: */
 | 
						|
/* MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) */
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = 1, i__2 = (f2cmin(*m,*n) << 1) + f2cmax(*m,*n);
 | 
						|
	    mwrsvd = f2cmax(i__1,i__2);
 | 
						|
	    mlwork = f2cmax(mlwork,mwrsvd);
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = mlrwrk, i__2 = *n + f2cmin(*m,*n) * 5;
 | 
						|
	    mlrwrk = f2cmax(i__1,i__2);
 | 
						|
	    if (lquery) {
 | 
						|
		zgesvd_("O", "S", m, n, &x[x_offset], ldx, &rwork[1], &b[
 | 
						|
			b_offset], ldb, &w[w_offset], ldw, &zwork[1], &c_n1, 
 | 
						|
			rdummy, &info1);
 | 
						|
		lwrsvd = (integer) zwork[1].r;
 | 
						|
		olwork = f2cmax(olwork,lwrsvd);
 | 
						|
	    }
 | 
						|
	} else if (*whtsvd == 2) {
 | 
						|
/* The following is specified as the minimal */
 | 
						|
/* length of WORK in the definition of ZGESDD: */
 | 
						|
/* MWRSDD = 2*f2cmin(M,N)*f2cmin(M,N)+2*f2cmin(M,N)+f2cmax(M,N). */
 | 
						|
/* RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N) */
 | 
						|
/* In LAPACK 3.10.1 RWORK is defined differently. */
 | 
						|
/* Below we take f2cmax over the two versions. */
 | 
						|
/* IMINWR = 8*MIN(M,N) */
 | 
						|
	    mwrsdd = (f2cmin(*m,*n) << 1) * f2cmin(*m,*n) + (f2cmin(*m,*n) << 1) + f2cmax(
 | 
						|
		    *m,*n);
 | 
						|
	    mlwork = f2cmax(mlwork,mwrsdd);
 | 
						|
	    iminwr = f2cmin(*m,*n) << 3;
 | 
						|
/* Computing MAX */
 | 
						|
/* Computing MAX */
 | 
						|
	    i__3 = f2cmin(*m,*n) * 5 * f2cmin(*m,*n) + f2cmin(*m,*n) * 7, i__4 = f2cmin(*
 | 
						|
		    m,*n) * 5 * f2cmin(*m,*n) + f2cmin(*m,*n) * 5, i__3 = f2cmax(i__3,
 | 
						|
		    i__4), i__4 = (f2cmax(*m,*n) << 1) * f2cmin(*m,*n) + (f2cmin(*m,*n)
 | 
						|
		     << 1) * f2cmin(*m,*n) + f2cmin(*m,*n);
 | 
						|
	    i__1 = mlrwrk, i__2 = *n + f2cmax(i__3,i__4);
 | 
						|
	    mlrwrk = f2cmax(i__1,i__2);
 | 
						|
	    if (lquery) {
 | 
						|
		zgesdd_("O", m, n, &x[x_offset], ldx, &rwork[1], &b[b_offset],
 | 
						|
			 ldb, &w[w_offset], ldw, &zwork[1], &c_n1, rdummy, &
 | 
						|
			iwork[1], &info1);
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = mwrsdd, i__2 = (integer) zwork[1].r;
 | 
						|
		lwrsdd = f2cmax(i__1,i__2);
 | 
						|
/* Possible bug in ZGESDD optimal workspace size. */
 | 
						|
		olwork = f2cmax(olwork,lwrsdd);
 | 
						|
	    }
 | 
						|
	} else if (*whtsvd == 3) {
 | 
						|
	    zgesvdq_("H", "P", "N", "R", "R", m, n, &x[x_offset], ldx, &rwork[
 | 
						|
		    1], &z__[z_offset], ldz, &w[w_offset], ldw, &numrnk, &
 | 
						|
		    iwork[1], &c_n1, &zwork[1], &c_n1, rdummy, &c_n1, &info1);
 | 
						|
	    iminwr = iwork[1];
 | 
						|
	    mwrsvq = (integer) zwork[2].r;
 | 
						|
	    mlwork = f2cmax(mlwork,mwrsvq);
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = mlrwrk, i__2 = *n + (integer) rdummy[0];
 | 
						|
	    mlrwrk = f2cmax(i__1,i__2);
 | 
						|
	    if (lquery) {
 | 
						|
		lwrsvq = (integer) zwork[1].r;
 | 
						|
		olwork = f2cmax(olwork,lwrsvq);
 | 
						|
	    }
 | 
						|
	} else if (*whtsvd == 4) {
 | 
						|
	    *(unsigned char *)jsvopt = 'J';
 | 
						|
	    zgejsv_("F", "U", jsvopt, "R", "N", "P", m, n, &x[x_offset], ldx, 
 | 
						|
		    &rwork[1], &z__[z_offset], ldz, &w[w_offset], ldw, &zwork[
 | 
						|
		    1], &c_n1, rdummy, &c_n1, &iwork[1], &info1);
 | 
						|
	    iminwr = iwork[1];
 | 
						|
	    mwrsvj = (integer) zwork[2].r;
 | 
						|
	    mlwork = f2cmax(mlwork,mwrsvj);
 | 
						|
/* Computing MAX */
 | 
						|
/* Computing MAX */
 | 
						|
	    i__3 = 7, i__4 = (integer) rdummy[0];
 | 
						|
	    i__1 = mlrwrk, i__2 = *n + f2cmax(i__3,i__4);
 | 
						|
	    mlrwrk = f2cmax(i__1,i__2);
 | 
						|
	    if (lquery) {
 | 
						|
		lwrsvj = (integer) zwork[1].r;
 | 
						|
		olwork = f2cmax(olwork,lwrsvj);
 | 
						|
	    }
 | 
						|
/*         END SELECT */
 | 
						|
	}
 | 
						|
	if (wntvec || wntex || lsame_(jobz, "F")) {
 | 
						|
	    *(unsigned char *)jobzl = 'V';
 | 
						|
	} else {
 | 
						|
	    *(unsigned char *)jobzl = 'N';
 | 
						|
	}
 | 
						|
/* Workspace calculation to the ZGEEV call */
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = 1, i__2 = *n << 1;
 | 
						|
	mwrkev = f2cmax(i__1,i__2);
 | 
						|
	mlwork = f2cmax(mlwork,mwrkev);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = mlrwrk, i__2 = *n + (*n << 1);
 | 
						|
	mlrwrk = f2cmax(i__1,i__2);
 | 
						|
	if (lquery) {
 | 
						|
	    zgeev_("N", jobzl, n, &s[s_offset], lds, &eigs[1], &w[w_offset], 
 | 
						|
		    ldw, &w[w_offset], ldw, &zwork[1], &c_n1, &rwork[1], &
 | 
						|
		    info1);
 | 
						|
	    lwrkev = (integer) zwork[1].r;
 | 
						|
	    olwork = f2cmax(olwork,lwrkev);
 | 
						|
	}
 | 
						|
 | 
						|
	if (*liwork < iminwr && ! lquery) {
 | 
						|
	    *info = -30;
 | 
						|
	}
 | 
						|
	if (*lrwork < mlrwrk && ! lquery) {
 | 
						|
	    *info = -28;
 | 
						|
	}
 | 
						|
	if (*lzwork < mlwork && ! lquery) {
 | 
						|
	    *info = -26;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("ZGEDMD", &i__1);
 | 
						|
	return 0;
 | 
						|
    } else if (lquery) {
 | 
						|
/*     Return minimal and optimal workspace sizes */
 | 
						|
	iwork[1] = iminwr;
 | 
						|
	rwork[1] = (doublereal) mlrwrk;
 | 
						|
	zwork[1].r = (doublereal) mlwork, zwork[1].i = 0.;
 | 
						|
	zwork[2].r = (doublereal) olwork, zwork[2].i = 0.;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
/* ............................................................ */
 | 
						|
 | 
						|
    ofl = dlamch_("O");
 | 
						|
    small = dlamch_("S");
 | 
						|
    badxy = FALSE_;
 | 
						|
 | 
						|
/*     <1> Optional scaling of the snapshots (columns of X, Y) */
 | 
						|
/*     ========================================================== */
 | 
						|
    if (sccolx) {
 | 
						|
/* The columns of X will be normalized. */
 | 
						|
/* To prevent overflows, the column norms of X are */
 | 
						|
/* carefully computed using ZLASSQ. */
 | 
						|
	*k = 0;
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
/* WORK(i) = DZNRM2( M, X(1,i), 1 ) */
 | 
						|
	    scale = zero;
 | 
						|
	    zlassq_(m, &x[i__ * x_dim1 + 1], &c__1, &scale, &ssum);
 | 
						|
	    if (disnan_(&scale) || disnan_(&ssum)) {
 | 
						|
		*k = 0;
 | 
						|
		*info = -8;
 | 
						|
		i__2 = -(*info);
 | 
						|
		xerbla_("ZGEDMD", &i__2);
 | 
						|
	    }
 | 
						|
	    if (scale != zero && ssum != zero) {
 | 
						|
		rootsc = sqrt(ssum);
 | 
						|
		if (scale >= ofl / rootsc) {
 | 
						|
/*                 Norm of X(:,i) overflows. First, X(:,i) */
 | 
						|
/*                 is scaled by */
 | 
						|
/*                 ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2. */
 | 
						|
/*                 Next, the norm of X(:,i) is stored without */
 | 
						|
/*                 overflow as RWORK(i) = - SCALE * (ROOTSC/M), */
 | 
						|
/*                 the minus sign indicating the 1/M factor. */
 | 
						|
/*                 Scaling is performed without overflow, and */
 | 
						|
/*                 underflow may occur in the smallest entries */
 | 
						|
/*                 of X(:,i). The relative backward and forward */
 | 
						|
/*                 errors are small in the ell_2 norm. */
 | 
						|
		    d__1 = one / rootsc;
 | 
						|
		    zlascl_("G", &c__0, &c__0, &scale, &d__1, m, &c__1, &x[
 | 
						|
			    i__ * x_dim1 + 1], ldx, &info2);
 | 
						|
		    rwork[i__] = -scale * (rootsc / (doublereal) (*m));
 | 
						|
		} else {
 | 
						|
/*                 X(:,i) will be scaled to unit 2-norm */
 | 
						|
		    rwork[i__] = scale * rootsc;
 | 
						|
		    zlascl_("G", &c__0, &c__0, &rwork[i__], &one, m, &c__1, &
 | 
						|
			    x[i__ * x_dim1 + 1], ldx, &info2);
 | 
						|
/*                 X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i)   ! INTRINSIC */
 | 
						|
/* LAPACK CALL */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		rwork[i__] = zero;
 | 
						|
		++(*k);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (*k == *n) {
 | 
						|
/* All columns of X are zero. Return error code -8. */
 | 
						|
/* (the 8th input variable had an illegal value) */
 | 
						|
	    *k = 0;
 | 
						|
	    *info = -8;
 | 
						|
	    i__1 = -(*info);
 | 
						|
	    xerbla_("ZGEDMD", &i__1);
 | 
						|
	    return 0;
 | 
						|
	}
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
/*           Now, apply the same scaling to the columns of Y. */
 | 
						|
	    if (rwork[i__] > zero) {
 | 
						|
		d__1 = one / rwork[i__];
 | 
						|
		zdscal_(m, &d__1, &y[i__ * y_dim1 + 1], &c__1);
 | 
						|
/*               Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i)       ! INTRINSIC */
 | 
						|
/* BLAS CALL */
 | 
						|
	    } else if (rwork[i__] < zero) {
 | 
						|
		d__1 = -rwork[i__];
 | 
						|
		d__2 = one / (doublereal) (*m);
 | 
						|
		zlascl_("G", &c__0, &c__0, &d__1, &d__2, m, &c__1, &y[i__ * 
 | 
						|
			y_dim1 + 1], ldy, &info2);
 | 
						|
/* LAPACK C */
 | 
						|
	    } else if (z_abs(&y[izamax_(m, &y[i__ * y_dim1 + 1], &c__1) + i__ 
 | 
						|
		    * y_dim1]) != zero) {
 | 
						|
/*               X(:,i) is zero vector. For consistency, */
 | 
						|
/*               Y(:,i) should also be zero. If Y(:,i) is not */
 | 
						|
/*               zero, then the data might be inconsistent or */
 | 
						|
/*               corrupted. If JOBS == 'C', Y(:,i) is set to */
 | 
						|
/*               zero and a warning flag is raised. */
 | 
						|
/*               The computation continues but the */
 | 
						|
/*               situation will be reported in the output. */
 | 
						|
		badxy = TRUE_;
 | 
						|
		if (lsame_(jobs, "C")) {
 | 
						|
		    zdscal_(m, &zero, &y[i__ * y_dim1 + 1], &c__1);
 | 
						|
		}
 | 
						|
/* BLAS CALL */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (sccoly) {
 | 
						|
/* The columns of Y will be normalized. */
 | 
						|
/* To prevent overflows, the column norms of Y are */
 | 
						|
/* carefully computed using ZLASSQ. */
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
/* RWORK(i) = DZNRM2( M, Y(1,i), 1 ) */
 | 
						|
	    scale = zero;
 | 
						|
	    zlassq_(m, &y[i__ * y_dim1 + 1], &c__1, &scale, &ssum);
 | 
						|
	    if (disnan_(&scale) || disnan_(&ssum)) {
 | 
						|
		*k = 0;
 | 
						|
		*info = -10;
 | 
						|
		i__2 = -(*info);
 | 
						|
		xerbla_("ZGEDMD", &i__2);
 | 
						|
	    }
 | 
						|
	    if (scale != zero && ssum != zero) {
 | 
						|
		rootsc = sqrt(ssum);
 | 
						|
		if (scale >= ofl / rootsc) {
 | 
						|
/*                 Norm of Y(:,i) overflows. First, Y(:,i) */
 | 
						|
/*                 is scaled by */
 | 
						|
/*                 ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2. */
 | 
						|
/*                 Next, the norm of Y(:,i) is stored without */
 | 
						|
/*                 overflow as RWORK(i) = - SCALE * (ROOTSC/M), */
 | 
						|
/*                 the minus sign indicating the 1/M factor. */
 | 
						|
/*                 Scaling is performed without overflow, and */
 | 
						|
/*                 underflow may occur in the smallest entries */
 | 
						|
/*                 of Y(:,i). The relative backward and forward */
 | 
						|
/*                 errors are small in the ell_2 norm. */
 | 
						|
		    d__1 = one / rootsc;
 | 
						|
		    zlascl_("G", &c__0, &c__0, &scale, &d__1, m, &c__1, &y[
 | 
						|
			    i__ * y_dim1 + 1], ldy, &info2);
 | 
						|
		    rwork[i__] = -scale * (rootsc / (doublereal) (*m));
 | 
						|
		} else {
 | 
						|
/*                 Y(:,i) will be scaled to unit 2-norm */
 | 
						|
		    rwork[i__] = scale * rootsc;
 | 
						|
		    zlascl_("G", &c__0, &c__0, &rwork[i__], &one, m, &c__1, &
 | 
						|
			    y[i__ * y_dim1 + 1], ldy, &info2);
 | 
						|
/*                 Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i)          ! INTRINSIC */
 | 
						|
/* LAPAC */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		rwork[i__] = zero;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
/*           Now, apply the same scaling to the columns of X. */
 | 
						|
	    if (rwork[i__] > zero) {
 | 
						|
		d__1 = one / rwork[i__];
 | 
						|
		zdscal_(m, &d__1, &x[i__ * x_dim1 + 1], &c__1);
 | 
						|
/*               X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i)      ! INTRINSIC */
 | 
						|
/* BLAS CALL */
 | 
						|
	    } else if (rwork[i__] < zero) {
 | 
						|
		d__1 = -rwork[i__];
 | 
						|
		d__2 = one / (doublereal) (*m);
 | 
						|
		zlascl_("G", &c__0, &c__0, &d__1, &d__2, m, &c__1, &x[i__ * 
 | 
						|
			x_dim1 + 1], ldx, &info2);
 | 
						|
/* LAPACK C */
 | 
						|
	    } else if (z_abs(&x[izamax_(m, &x[i__ * x_dim1 + 1], &c__1) + i__ 
 | 
						|
		    * x_dim1]) != zero) {
 | 
						|
/*               Y(:,i) is zero vector.  If X(:,i) is not */
 | 
						|
/*               zero, then a warning flag is raised. */
 | 
						|
/*               The computation continues but the */
 | 
						|
/*               situation will be reported in the output. */
 | 
						|
		badxy = TRUE_;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     <2> SVD of the data snapshot matrix X. */
 | 
						|
/*     ===================================== */
 | 
						|
/*     The left singular vectors are stored in the array X. */
 | 
						|
/*     The right singular vectors are in the array W. */
 | 
						|
/*     The array W will later on contain the eigenvectors */
 | 
						|
/*     of a Rayleigh quotient. */
 | 
						|
    numrnk = *n;
 | 
						|
/*      SELECT CASE ( WHTSVD ) */
 | 
						|
    if (*whtsvd == 1) {
 | 
						|
	zgesvd_("O", "S", m, n, &x[x_offset], ldx, &rwork[1], &b[b_offset], 
 | 
						|
		ldb, &w[w_offset], ldw, &zwork[1], lzwork, &rwork[*n + 1], &
 | 
						|
		info1);
 | 
						|
/* LA */
 | 
						|
	*(unsigned char *)t_or_n__ = 'C';
 | 
						|
    } else if (*whtsvd == 2) {
 | 
						|
	zgesdd_("O", m, n, &x[x_offset], ldx, &rwork[1], &b[b_offset], ldb, &
 | 
						|
		w[w_offset], ldw, &zwork[1], lzwork, &rwork[*n + 1], &iwork[1]
 | 
						|
		, &info1);
 | 
						|
/* LAP */
 | 
						|
	*(unsigned char *)t_or_n__ = 'C';
 | 
						|
    } else if (*whtsvd == 3) {
 | 
						|
	i__1 = *lrwork - *n;
 | 
						|
	zgesvdq_("H", "P", "N", "R", "R", m, n, &x[x_offset], ldx, &rwork[1], 
 | 
						|
		&z__[z_offset], ldz, &w[w_offset], ldw, &numrnk, &iwork[1], 
 | 
						|
		liwork, &zwork[1], lzwork, &rwork[*n + 1], &i__1, &info1);
 | 
						|
/* LAPACK CA */
 | 
						|
	zlacpy_("A", m, &numrnk, &z__[z_offset], ldz, &x[x_offset], ldx);
 | 
						|
/* LAPACK C */
 | 
						|
	*(unsigned char *)t_or_n__ = 'C';
 | 
						|
    } else if (*whtsvd == 4) {
 | 
						|
	i__1 = *lrwork - *n;
 | 
						|
	zgejsv_("F", "U", jsvopt, "R", "N", "P", m, n, &x[x_offset], ldx, &
 | 
						|
		rwork[1], &z__[z_offset], ldz, &w[w_offset], ldw, &zwork[1], 
 | 
						|
		lzwork, &rwork[*n + 1], &i__1, &iwork[1], &info1);
 | 
						|
	zlacpy_("A", m, n, &z__[z_offset], ldz, &x[x_offset], ldx);
 | 
						|
/* LAPACK CALL */
 | 
						|
	*(unsigned char *)t_or_n__ = 'N';
 | 
						|
	xscl1 = rwork[*n + 1];
 | 
						|
	xscl2 = rwork[*n + 2];
 | 
						|
	if (xscl1 != xscl2) {
 | 
						|
/* This is an exceptional situation. If the */
 | 
						|
/* data matrices are not scaled and the */
 | 
						|
/* largest singular value of X overflows. */
 | 
						|
/* In that case ZGEJSV can return the SVD */
 | 
						|
/* in scaled form. The scaling factor can be used */
 | 
						|
/* to rescale the data (X and Y). */
 | 
						|
	    zlascl_("G", &c__0, &c__0, &xscl1, &xscl2, m, n, &y[y_offset], 
 | 
						|
		    ldy, &info2);
 | 
						|
	}
 | 
						|
/*      END SELECT */
 | 
						|
    }
 | 
						|
 | 
						|
    if (info1 > 0) {
 | 
						|
/* The SVD selected subroutine did not converge. */
 | 
						|
/* Return with an error code. */
 | 
						|
	*info = 2;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (rwork[1] == zero) {
 | 
						|
/* The largest computed singular value of (scaled) */
 | 
						|
/* X is zero. Return error code -8 */
 | 
						|
/* (the 8th input variable had an illegal value). */
 | 
						|
	*k = 0;
 | 
						|
	*info = -8;
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("ZGEDMD", &i__1);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/* <3> Determine the numerical rank of the data */
 | 
						|
/*    snapshots matrix X. This depends on the */
 | 
						|
/*    parameters NRNK and TOL. */
 | 
						|
/*      SELECT CASE ( NRNK ) */
 | 
						|
    if (*nrnk == -1) {
 | 
						|
	*k = 1;
 | 
						|
	i__1 = numrnk;
 | 
						|
	for (i__ = 2; i__ <= i__1; ++i__) {
 | 
						|
	    if (rwork[i__] <= rwork[1] * *tol || rwork[i__] <= small) {
 | 
						|
		myexit_();
 | 
						|
	    }
 | 
						|
	    ++(*k);
 | 
						|
	}
 | 
						|
    } else if (*nrnk == -2) {
 | 
						|
	*k = 1;
 | 
						|
	i__1 = numrnk - 1;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    if (rwork[i__ + 1] <= rwork[i__] * *tol || rwork[i__] <= small) {
 | 
						|
		myexit_();
 | 
						|
	    }
 | 
						|
	    ++(*k);
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	*k = 1;
 | 
						|
	i__1 = *nrnk;
 | 
						|
	for (i__ = 2; i__ <= i__1; ++i__) {
 | 
						|
	    if (rwork[i__] <= small) {
 | 
						|
		myexit_();
 | 
						|
	    }
 | 
						|
	    ++(*k);
 | 
						|
	}
 | 
						|
/*          END SELECT */
 | 
						|
    }
 | 
						|
/*   Now, U = X(1:M,1:K) is the SVD/POD basis for the */
 | 
						|
/*   snapshot data in the input matrix X. */
 | 
						|
/* <4> Compute the Rayleigh quotient S = U^H * A * U. */
 | 
						|
/*    Depending on the requested outputs, the computation */
 | 
						|
/*    is organized to compute additional auxiliary */
 | 
						|
/*    matrices (for the residuals and refinements). */
 | 
						|
 | 
						|
/*    In all formulas below, we need V_k*Sigma_k^(-1) */
 | 
						|
/*    where either V_k is in W(1:N,1:K), or V_k^H is in */
 | 
						|
/*    W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)). */
 | 
						|
    if (lsame_(t_or_n__, "N")) {
 | 
						|
	i__1 = *k;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    d__1 = one / rwork[i__];
 | 
						|
	    zdscal_(n, &d__1, &w[i__ * w_dim1 + 1], &c__1);
 | 
						|
/* W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i)      ! INTRINSIC */
 | 
						|
/* BLAS CALL */
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
/* This non-unit stride access is due to the fact */
 | 
						|
/* that ZGESVD, ZGESVDQ and ZGESDD return the */
 | 
						|
/* adjoint matrix of the right singular vectors. */
 | 
						|
/* DO i = 1, K */
 | 
						|
/* CALL ZDSCAL( N, ONE/RWORK(i), W(i,1), LDW )    ! BLAS CALL */
 | 
						|
/* ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N)      ! INTRINSIC */
 | 
						|
/* END DO */
 | 
						|
	i__1 = *k;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    rwork[*n + i__] = one / rwork[i__];
 | 
						|
	}
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = *k;
 | 
						|
	    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		i__3 = i__ + j * w_dim1;
 | 
						|
		i__4 = *n + i__;
 | 
						|
		z__2.r = rwork[i__4], z__2.i = zero;
 | 
						|
		i__5 = i__ + j * w_dim1;
 | 
						|
		z__1.r = z__2.r * w[i__5].r - z__2.i * w[i__5].i, z__1.i = 
 | 
						|
			z__2.r * w[i__5].i + z__2.i * w[i__5].r;
 | 
						|
		w[i__3].r = z__1.r, w[i__3].i = z__1.i;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (wntref) {
 | 
						|
 | 
						|
/* Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K))) */
 | 
						|
/* for computing the refined Ritz vectors */
 | 
						|
/* (optionally, outside ZGEDMD). */
 | 
						|
	zgemm_("N", t_or_n__, m, k, n, &zone, &y[y_offset], ldy, &w[w_offset],
 | 
						|
		 ldw, &zzero, &z__[z_offset], ldz);
 | 
						|
/* Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! */
 | 
						|
/* Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K))                   ! */
 | 
						|
 | 
						|
/* At this point Z contains */
 | 
						|
/* A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and */
 | 
						|
/* this is needed for computing the residuals. */
 | 
						|
/* This matrix is  returned in the array B and */
 | 
						|
/* it can be used to compute refined Ritz vectors. */
 | 
						|
/* BLA */
 | 
						|
	zlacpy_("A", m, k, &z__[z_offset], ldz, &b[b_offset], ldb);
 | 
						|
/* B(1:M,1:K) = Z(1:M,1:K)                  ! INTRINSIC */
 | 
						|
/* BLAS CALL */
 | 
						|
	zgemm_("C", "N", k, k, m, &zone, &x[x_offset], ldx, &z__[z_offset], 
 | 
						|
		ldz, &zzero, &s[s_offset], lds);
 | 
						|
/* S(1:K,1:K) = MATMUL(TRANSPOSE(CONJG(X(1:M,1:K))),Z(1:M,1:K)) */
 | 
						|
/* At this point S = U^H * A * U is the Rayleigh quotient. */
 | 
						|
/* BLA */
 | 
						|
    } else {
 | 
						|
/* A * U(:,1:K) is not explicitly needed and the */
 | 
						|
/* computation is organized differently. The Rayleigh */
 | 
						|
/* quotient is computed more efficiently. */
 | 
						|
	zgemm_("C", "N", k, n, m, &zone, &x[x_offset], ldx, &y[y_offset], ldy,
 | 
						|
		 &zzero, &z__[z_offset], ldz);
 | 
						|
/* Z(1:K,1:N) = MATMUL( TRANSPOSE(CONJG(X(1:M,1:K))), Y(1:M,1:N) */
 | 
						|
 | 
						|
	zgemm_("N", t_or_n__, k, k, n, &zone, &z__[z_offset], ldz, &w[
 | 
						|
		w_offset], ldw, &zzero, &s[s_offset], lds);
 | 
						|
/* S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! */
 | 
						|
/* S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K)))                 ! */
 | 
						|
/* At this point S = U^H * A * U is the Rayleigh quotient. */
 | 
						|
/* If the residuals are requested, save scaled V_k into Z. */
 | 
						|
/* Recall that V_k or V_k^H is stored in W. */
 | 
						|
/* BLAS */
 | 
						|
	if (wntres || wntex) {
 | 
						|
	    if (lsame_(t_or_n__, "N")) {
 | 
						|
		zlacpy_("A", n, k, &w[w_offset], ldw, &z__[z_offset], ldz);
 | 
						|
	    } else {
 | 
						|
		zlacpy_("A", k, n, &w[w_offset], ldw, &z__[z_offset], ldz);
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/* <5> Compute the Ritz values and (if requested) the */
 | 
						|
/*   right eigenvectors of the Rayleigh quotient. */
 | 
						|
 | 
						|
    zgeev_("N", jobzl, k, &s[s_offset], lds, &eigs[1], &w[w_offset], ldw, &w[
 | 
						|
	    w_offset], ldw, &zwork[1], lzwork, &rwork[*n + 1], &info1);
 | 
						|
 | 
						|
/* W(1:K,1:K) contains the eigenvectors of the Rayleigh */
 | 
						|
/* quotient.  See the description of Z. */
 | 
						|
/* Also, see the description of ZGEEV. */
 | 
						|
/* LAPACK CALL */
 | 
						|
    if (info1 > 0) {
 | 
						|
/* ZGEEV failed to compute the eigenvalues and */
 | 
						|
/* eigenvectors of the Rayleigh quotient. */
 | 
						|
	*info = 3;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/* <6> Compute the eigenvectors (if requested) and, */
 | 
						|
/* the residuals (if requested). */
 | 
						|
 | 
						|
    if (wntvec || wntex) {
 | 
						|
	if (wntres) {
 | 
						|
	    if (wntref) {
 | 
						|
/* Here, if the refinement is requested, we have */
 | 
						|
/* A*U(:,1:K) already computed and stored in Z. */
 | 
						|
/* For the residuals, need Y = A * U(:,1;K) * W. */
 | 
						|
		zgemm_("N", "N", m, k, k, &zone, &z__[z_offset], ldz, &w[
 | 
						|
			w_offset], ldw, &zzero, &y[y_offset], ldy);
 | 
						|
/* Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K)        ! INTRINSIC */
 | 
						|
/* This frees Z; Y contains A * U(:,1:K) * W. */
 | 
						|
/* BLAS CALL */
 | 
						|
	    } else {
 | 
						|
/* Compute S = V_k * Sigma_k^(-1) * W, where */
 | 
						|
/* V_k * Sigma_k^(-1) (or its adjoint) is stored in Z */
 | 
						|
		zgemm_(t_or_n__, "N", n, k, k, &zone, &z__[z_offset], ldz, &w[
 | 
						|
			w_offset], ldw, &zzero, &s[s_offset], lds);
 | 
						|
/* Then, compute Z = Y * S = */
 | 
						|
/* = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = */
 | 
						|
/* = A * U(:,1:K) * W(1:K,1:K) */
 | 
						|
		zgemm_("N", "N", m, k, n, &zone, &y[y_offset], ldy, &s[
 | 
						|
			s_offset], lds, &zzero, &z__[z_offset], ldz);
 | 
						|
/* Save a copy of Z into Y and free Z for holding */
 | 
						|
/* the Ritz vectors. */
 | 
						|
		zlacpy_("A", m, k, &z__[z_offset], ldz, &y[y_offset], ldy);
 | 
						|
		if (wntex) {
 | 
						|
		    zlacpy_("A", m, k, &z__[z_offset], ldz, &b[b_offset], ldb);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	} else if (wntex) {
 | 
						|
/* Compute S = V_k * Sigma_k^(-1) * W, where */
 | 
						|
/* V_k * Sigma_k^(-1) is stored in Z */
 | 
						|
	    zgemm_(t_or_n__, "N", n, k, k, &zone, &z__[z_offset], ldz, &w[
 | 
						|
		    w_offset], ldw, &zzero, &s[s_offset], lds);
 | 
						|
/* Then, compute Z = Y * S = */
 | 
						|
/* = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = */
 | 
						|
/* = A * U(:,1:K) * W(1:K,1:K) */
 | 
						|
	    zgemm_("N", "N", m, k, n, &zone, &y[y_offset], ldy, &s[s_offset], 
 | 
						|
		    lds, &zzero, &b[b_offset], ldb);
 | 
						|
/* The above call replaces the following two calls */
 | 
						|
/* that were used in the developing-testing phase. */
 | 
						|
/* CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & */
 | 
						|
/*           LDS, ZZERO, Z, LDZ) */
 | 
						|
/* Save a copy of Z into B and free Z for holding */
 | 
						|
/* the Ritz vectors. */
 | 
						|
/* CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) */
 | 
						|
	}
 | 
						|
 | 
						|
/* Compute the Ritz vectors */
 | 
						|
	if (wntvec) {
 | 
						|
	    zgemm_("N", "N", m, k, k, &zone, &x[x_offset], ldx, &w[w_offset], 
 | 
						|
		    ldw, &zzero, &z__[z_offset], ldz);
 | 
						|
	}
 | 
						|
/* Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K))         ! INTRINSIC */
 | 
						|
 | 
						|
/* BLAS CALL */
 | 
						|
	if (wntres) {
 | 
						|
	    i__1 = *k;
 | 
						|
	    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
		i__2 = i__;
 | 
						|
		z__1.r = -eigs[i__2].r, z__1.i = -eigs[i__2].i;
 | 
						|
		zaxpy_(m, &z__1, &z__[i__ * z_dim1 + 1], &c__1, &y[i__ * 
 | 
						|
			y_dim1 + 1], &c__1);
 | 
						|
/* Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i)            ! INTR */
 | 
						|
/* BLAS */
 | 
						|
		res[i__] = dznrm2_(m, &y[i__ * y_dim1 + 1], &c__1);
 | 
						|
/* BLAS */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (*whtsvd == 4) {
 | 
						|
	rwork[*n + 1] = xscl1;
 | 
						|
	rwork[*n + 2] = xscl2;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Successful exit. */
 | 
						|
    if (! badxy) {
 | 
						|
	*info = 0;
 | 
						|
    } else {
 | 
						|
/* A warning on possible data inconsistency. */
 | 
						|
/* This should be a rare event. */
 | 
						|
	*info = 4;
 | 
						|
    }
 | 
						|
/* ............................................................ */
 | 
						|
    return 0;
 | 
						|
/*     ...... */
 | 
						|
} /* zgedmd_ */
 | 
						|
 |