357 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			357 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SSPGVD
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSPGVD + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgvd.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgvd.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgvd.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 | 
						|
*                          LWORK, IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, UPLO
 | 
						|
*       INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       REAL               AP( * ), BP( * ), W( * ), WORK( * ),
 | 
						|
*      $                   Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
 | 
						|
*> of a real generalized symmetric-definite eigenproblem, of the form
 | 
						|
*> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 | 
						|
*> B are assumed to be symmetric, stored in packed format, and B is also
 | 
						|
*> positive definite.
 | 
						|
*> If eigenvectors are desired, it uses a divide and conquer algorithm.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITYPE
 | 
						|
*> \verbatim
 | 
						|
*>          ITYPE is INTEGER
 | 
						|
*>          Specifies the problem type to be solved:
 | 
						|
*>          = 1:  A*x = (lambda)*B*x
 | 
						|
*>          = 2:  A*B*x = (lambda)*x
 | 
						|
*>          = 3:  B*A*x = (lambda)*x
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangles of A and B are stored;
 | 
						|
*>          = 'L':  Lower triangles of A and B are stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is REAL array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric matrix
 | 
						|
*>          A, packed columnwise in a linear array.  The j-th column of A
 | 
						|
*>          is stored in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*>
 | 
						|
*>          On exit, the contents of AP are destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] BP
 | 
						|
*> \verbatim
 | 
						|
*>          BP is REAL array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the upper or lower triangle of the symmetric matrix
 | 
						|
*>          B, packed columnwise in a linear array.  The j-th column of B
 | 
						|
*>          is stored in the array BP as follows:
 | 
						|
*>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
 | 
						|
*>
 | 
						|
*>          On exit, the triangular factor U or L from the Cholesky
 | 
						|
*>          factorization B = U**T*U or B = L*L**T, in the same storage
 | 
						|
*>          format as B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is REAL array, dimension (N)
 | 
						|
*>          If INFO = 0, the eigenvalues in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension (LDZ, N)
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 | 
						|
*>          eigenvectors.  The eigenvectors are normalized as follows:
 | 
						|
*>          if ITYPE = 1 or 2, Z**T*B*Z = I;
 | 
						|
*>          if ITYPE = 3, Z**T*inv(B)*Z = I.
 | 
						|
*>          If JOBZ = 'N', then Z is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          JOBZ = 'V', LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.
 | 
						|
*>          If N <= 1,               LWORK >= 1.
 | 
						|
*>          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
 | 
						|
*>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the required sizes of the WORK and IWORK
 | 
						|
*>          arrays, returns these values as the first entries of the WORK
 | 
						|
*>          and IWORK arrays, and no error message related to LWORK or
 | 
						|
*>          LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | 
						|
*>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of the array IWORK.
 | 
						|
*>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
 | 
						|
*>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
 | 
						|
*>
 | 
						|
*>          If LIWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the required sizes of the WORK and
 | 
						|
*>          IWORK arrays, returns these values as the first entries of
 | 
						|
*>          the WORK and IWORK arrays, and no error message related to
 | 
						|
*>          LWORK or LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  SPPTRF or SSPEVD returned an error code:
 | 
						|
*>             <= N:  if INFO = i, SSPEVD failed to converge;
 | 
						|
*>                    i off-diagonal elements of an intermediate
 | 
						|
*>                    tridiagonal form did not converge to zero;
 | 
						|
*>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
 | 
						|
*>                    principal minor of order i of B is not positive.
 | 
						|
*>                    The factorization of B could not be completed and
 | 
						|
*>                    no eigenvalues or eigenvectors were computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup hpgvd
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 | 
						|
     $                   LWORK, IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, UPLO
 | 
						|
      INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      REAL               AP( * ), BP( * ), W( * ), WORK( * ),
 | 
						|
     $                   Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, UPPER, WANTZ
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            J, LIWMIN, LWMIN, NEIG
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SROUNDUP_LWORK
 | 
						|
      EXTERNAL           LSAME, SROUNDUP_LWORK
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SPPTRF, SSPEVD, SSPGST, STPMV, STPSV, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( N.LE.1 ) THEN
 | 
						|
            LIWMIN = 1
 | 
						|
            LWMIN = 1
 | 
						|
         ELSE
 | 
						|
            IF( WANTZ ) THEN
 | 
						|
               LIWMIN = 3 + 5*N
 | 
						|
               LWMIN = 1 + 6*N + 2*N**2
 | 
						|
            ELSE
 | 
						|
               LIWMIN = 1
 | 
						|
               LWMIN = 2*N
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
 | 
						|
         IWORK( 1 ) = LIWMIN
 | 
						|
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -11
 | 
						|
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -13
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SSPGVD', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Form a Cholesky factorization of BP.
 | 
						|
*
 | 
						|
      CALL SPPTRF( UPLO, N, BP, INFO )
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         INFO = N + INFO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Transform problem to standard eigenvalue problem and solve.
 | 
						|
*
 | 
						|
      CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
 | 
						|
      CALL SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
 | 
						|
     $             LIWORK, INFO )
 | 
						|
      LWMIN = INT( MAX( REAL( LWMIN ), REAL( WORK( 1 ) ) ) )
 | 
						|
      LIWMIN = INT( MAX( REAL( LIWMIN ), REAL( IWORK( 1 ) ) ) )
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
*
 | 
						|
*        Backtransform eigenvectors to the original problem.
 | 
						|
*
 | 
						|
         NEIG = N
 | 
						|
         IF( INFO.GT.0 )
 | 
						|
     $      NEIG = INFO - 1
 | 
						|
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
 | 
						|
*           backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
 | 
						|
*
 | 
						|
            IF( UPPER ) THEN
 | 
						|
               TRANS = 'N'
 | 
						|
            ELSE
 | 
						|
               TRANS = 'T'
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            DO 10 J = 1, NEIG
 | 
						|
               CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | 
						|
     $                     1 )
 | 
						|
   10       CONTINUE
 | 
						|
*
 | 
						|
         ELSE IF( ITYPE.EQ.3 ) THEN
 | 
						|
*
 | 
						|
*           For B*A*x=(lambda)*x;
 | 
						|
*           backtransform eigenvectors: x = L*y or U**T *y
 | 
						|
*
 | 
						|
            IF( UPPER ) THEN
 | 
						|
               TRANS = 'T'
 | 
						|
            ELSE
 | 
						|
               TRANS = 'N'
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            DO 20 J = 1, NEIG
 | 
						|
               CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | 
						|
     $                     1 )
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
 | 
						|
      IWORK( 1 ) = LIWMIN
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSPGVD
 | 
						|
*
 | 
						|
      END
 |