1047 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1047 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief <b> SPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b> */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SPPSVX + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sppsvx.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sppsvx.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sppsvx.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, */
 | 
						|
/*                          X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          EQUED, FACT, UPLO */
 | 
						|
/*       INTEGER            INFO, LDB, LDX, N, NRHS */
 | 
						|
/*       REAL               RCOND */
 | 
						|
/*       INTEGER            IWORK( * ) */
 | 
						|
/*       REAL               AFP( * ), AP( * ), B( LDB, * ), BERR( * ), */
 | 
						|
/*      $                   FERR( * ), S( * ), WORK( * ), X( LDX, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SPPSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
 | 
						|
/* > compute the solution to a real system of linear equations */
 | 
						|
/* >    A * X = B, */
 | 
						|
/* > where A is an N-by-N symmetric positive definite matrix stored in */
 | 
						|
/* > packed format and X and B are N-by-NRHS matrices. */
 | 
						|
/* > */
 | 
						|
/* > Error bounds on the solution and a condition estimate are also */
 | 
						|
/* > provided. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/* > \par Description: */
 | 
						|
/*  ================= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > The following steps are performed: */
 | 
						|
/* > */
 | 
						|
/* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
 | 
						|
/* >    the system: */
 | 
						|
/* >       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
 | 
						|
/* >    Whether or not the system will be equilibrated depends on the */
 | 
						|
/* >    scaling of the matrix A, but if equilibration is used, A is */
 | 
						|
/* >    overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
 | 
						|
/* > */
 | 
						|
/* > 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
 | 
						|
/* >    factor the matrix A (after equilibration if FACT = 'E') as */
 | 
						|
/* >       A = U**T* U,  if UPLO = 'U', or */
 | 
						|
/* >       A = L * L**T,  if UPLO = 'L', */
 | 
						|
/* >    where U is an upper triangular matrix and L is a lower triangular */
 | 
						|
/* >    matrix. */
 | 
						|
/* > */
 | 
						|
/* > 3. If the leading i-by-i principal minor is not positive definite, */
 | 
						|
/* >    then the routine returns with INFO = i. Otherwise, the factored */
 | 
						|
/* >    form of A is used to estimate the condition number of the matrix */
 | 
						|
/* >    A.  If the reciprocal of the condition number is less than machine */
 | 
						|
/* >    precision, INFO = N+1 is returned as a warning, but the routine */
 | 
						|
/* >    still goes on to solve for X and compute error bounds as */
 | 
						|
/* >    described below. */
 | 
						|
/* > */
 | 
						|
/* > 4. The system of equations is solved for X using the factored form */
 | 
						|
/* >    of A. */
 | 
						|
/* > */
 | 
						|
/* > 5. Iterative refinement is applied to improve the computed solution */
 | 
						|
/* >    matrix and calculate error bounds and backward error estimates */
 | 
						|
/* >    for it. */
 | 
						|
/* > */
 | 
						|
/* > 6. If equilibration was used, the matrix X is premultiplied by */
 | 
						|
/* >    diag(S) so that it solves the original system before */
 | 
						|
/* >    equilibration. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] FACT */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          FACT is CHARACTER*1 */
 | 
						|
/* >          Specifies whether or not the factored form of the matrix A is */
 | 
						|
/* >          supplied on entry, and if not, whether the matrix A should be */
 | 
						|
/* >          equilibrated before it is factored. */
 | 
						|
/* >          = 'F':  On entry, AFP contains the factored form of A. */
 | 
						|
/* >                  If EQUED = 'Y', the matrix A has been equilibrated */
 | 
						|
/* >                  with scaling factors given by S.  AP and AFP will not */
 | 
						|
/* >                  be modified. */
 | 
						|
/* >          = 'N':  The matrix A will be copied to AFP and factored. */
 | 
						|
/* >          = 'E':  The matrix A will be equilibrated if necessary, then */
 | 
						|
/* >                  copied to AFP and factored. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >          = 'U':  Upper triangle of A is stored; */
 | 
						|
/* >          = 'L':  Lower triangle of A is stored. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The number of linear equations, i.e., the order of the */
 | 
						|
/* >          matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NRHS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NRHS is INTEGER */
 | 
						|
/* >          The number of right hand sides, i.e., the number of columns */
 | 
						|
/* >          of the matrices B and X.  NRHS >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] AP */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          AP is REAL array, dimension (N*(N+1)/2) */
 | 
						|
/* >          On entry, the upper or lower triangle of the symmetric matrix */
 | 
						|
/* >          A, packed columnwise in a linear array, except if FACT = 'F' */
 | 
						|
/* >          and EQUED = 'Y', then A must contain the equilibrated matrix */
 | 
						|
/* >          diag(S)*A*diag(S).  The j-th column of A is stored in the */
 | 
						|
/* >          array AP as follows: */
 | 
						|
/* >          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 | 
						|
/* >          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
 | 
						|
/* >          See below for further details.  A is not modified if */
 | 
						|
/* >          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */
 | 
						|
/* > */
 | 
						|
/* >          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
 | 
						|
/* >          diag(S)*A*diag(S). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] AFP */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          AFP is REAL array, dimension (N*(N+1)/2) */
 | 
						|
/* >          If FACT = 'F', then AFP is an input argument and on entry */
 | 
						|
/* >          contains the triangular factor U or L from the Cholesky */
 | 
						|
/* >          factorization A = U**T*U or A = L*L**T, in the same storage */
 | 
						|
/* >          format as A.  If EQUED .ne. 'N', then AFP is the factored */
 | 
						|
/* >          form of the equilibrated matrix A. */
 | 
						|
/* > */
 | 
						|
/* >          If FACT = 'N', then AFP is an output argument and on exit */
 | 
						|
/* >          returns the triangular factor U or L from the Cholesky */
 | 
						|
/* >          factorization A = U**T * U or A = L * L**T of the original */
 | 
						|
/* >          matrix A. */
 | 
						|
/* > */
 | 
						|
/* >          If FACT = 'E', then AFP is an output argument and on exit */
 | 
						|
/* >          returns the triangular factor U or L from the Cholesky */
 | 
						|
/* >          factorization A = U**T * U or A = L * L**T of the equilibrated */
 | 
						|
/* >          matrix A (see the description of AP for the form of the */
 | 
						|
/* >          equilibrated matrix). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] EQUED */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          EQUED is CHARACTER*1 */
 | 
						|
/* >          Specifies the form of equilibration that was done. */
 | 
						|
/* >          = 'N':  No equilibration (always true if FACT = 'N'). */
 | 
						|
/* >          = 'Y':  Equilibration was done, i.e., A has been replaced by */
 | 
						|
/* >                  diag(S) * A * diag(S). */
 | 
						|
/* >          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
 | 
						|
/* >          output argument. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] S */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          S is REAL array, dimension (N) */
 | 
						|
/* >          The scale factors for A; not accessed if EQUED = 'N'.  S is */
 | 
						|
/* >          an input argument if FACT = 'F'; otherwise, S is an output */
 | 
						|
/* >          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
 | 
						|
/* >          must be positive. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is REAL array, dimension (LDB,NRHS) */
 | 
						|
/* >          On entry, the N-by-NRHS right hand side matrix B. */
 | 
						|
/* >          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
 | 
						|
/* >          B is overwritten by diag(S) * B. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] X */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X is REAL array, dimension (LDX,NRHS) */
 | 
						|
/* >          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
 | 
						|
/* >          the original system of equations.  Note that if EQUED = 'Y', */
 | 
						|
/* >          A and B are modified on exit, and the solution to the */
 | 
						|
/* >          equilibrated system is inv(diag(S))*X. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDX */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDX is INTEGER */
 | 
						|
/* >          The leading dimension of the array X.  LDX >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RCOND */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RCOND is REAL */
 | 
						|
/* >          The estimate of the reciprocal condition number of the matrix */
 | 
						|
/* >          A after equilibration (if done).  If RCOND is less than the */
 | 
						|
/* >          machine precision (in particular, if RCOND = 0), the matrix */
 | 
						|
/* >          is singular to working precision.  This condition is */
 | 
						|
/* >          indicated by a return code of INFO > 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] FERR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          FERR is REAL array, dimension (NRHS) */
 | 
						|
/* >          The estimated forward error bound for each solution vector */
 | 
						|
/* >          X(j) (the j-th column of the solution matrix X). */
 | 
						|
/* >          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 | 
						|
/* >          is an estimated upper bound for the magnitude of the largest */
 | 
						|
/* >          element in (X(j) - XTRUE) divided by the magnitude of the */
 | 
						|
/* >          largest element in X(j).  The estimate is as reliable as */
 | 
						|
/* >          the estimate for RCOND, and is almost always a slight */
 | 
						|
/* >          overestimate of the true error. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] BERR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BERR is REAL array, dimension (NRHS) */
 | 
						|
/* >          The componentwise relative backward error of each solution */
 | 
						|
/* >          vector X(j) (i.e., the smallest relative change in */
 | 
						|
/* >          any element of A or B that makes X(j) an exact solution). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension (3*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array, dimension (N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0:  if INFO = i, and i is */
 | 
						|
/* >                <= N:  the leading minor of order i of A is */
 | 
						|
/* >                       not positive definite, so the factorization */
 | 
						|
/* >                       could not be completed, and the solution has not */
 | 
						|
/* >                       been computed. RCOND = 0 is returned. */
 | 
						|
/* >                = N+1: U is nonsingular, but RCOND is less than machine */
 | 
						|
/* >                       precision, meaning that the matrix is singular */
 | 
						|
/* >                       to working precision.  Nevertheless, the */
 | 
						|
/* >                       solution and error bounds are computed because */
 | 
						|
/* >                       there are a number of situations where the */
 | 
						|
/* >                       computed solution can be more accurate than the */
 | 
						|
/* >                       value of RCOND would suggest. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date April 2012 */
 | 
						|
 | 
						|
/* > \ingroup realOTHERsolve */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  The packed storage scheme is illustrated by the following example */
 | 
						|
/* >  when N = 4, UPLO = 'U': */
 | 
						|
/* > */
 | 
						|
/* >  Two-dimensional storage of the symmetric matrix A: */
 | 
						|
/* > */
 | 
						|
/* >     a11 a12 a13 a14 */
 | 
						|
/* >         a22 a23 a24 */
 | 
						|
/* >             a33 a34     (aij = conjg(aji)) */
 | 
						|
/* >                 a44 */
 | 
						|
/* > */
 | 
						|
/* >  Packed storage of the upper triangle of A: */
 | 
						|
/* > */
 | 
						|
/* >  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void sppsvx_(char *fact, char *uplo, integer *n, integer *
 | 
						|
	nrhs, real *ap, real *afp, char *equed, real *s, real *b, integer *
 | 
						|
	ldb, real *x, integer *ldx, real *rcond, real *ferr, real *berr, real 
 | 
						|
	*work, integer *iwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
 | 
						|
    real r__1, r__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real amax, smin, smax;
 | 
						|
    integer i__, j;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    real scond, anorm;
 | 
						|
    logical equil, rcequ;
 | 
						|
    extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *);
 | 
						|
    extern real slamch_(char *);
 | 
						|
    logical nofact;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    real bignum;
 | 
						|
    integer infequ;
 | 
						|
    extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *, 
 | 
						|
	    integer *, real *, integer *);
 | 
						|
    extern real slansp_(char *, char *, integer *, real *, real *);
 | 
						|
    extern /* Subroutine */ void sppcon_(char *, integer *, real *, real *, 
 | 
						|
	    real *, real *, integer *, integer *), slaqsp_(char *, 
 | 
						|
	    integer *, real *, real *, real *, real *, char *)
 | 
						|
	    ;
 | 
						|
    real smlnum;
 | 
						|
    extern /* Subroutine */ void sppequ_(char *, integer *, real *, real *, 
 | 
						|
	    real *, real *, integer *), spprfs_(char *, integer *, 
 | 
						|
	    integer *, real *, real *, real *, integer *, real *, integer *, 
 | 
						|
	    real *, real *, real *, integer *, integer *), spptrf_(
 | 
						|
	    char *, integer *, real *, integer *), spptrs_(char *, 
 | 
						|
	    integer *, integer *, real *, real *, integer *, integer *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK driver routine (version 3.7.1) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     April 2012 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --ap;
 | 
						|
    --afp;
 | 
						|
    --s;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    x_dim1 = *ldx;
 | 
						|
    x_offset = 1 + x_dim1 * 1;
 | 
						|
    x -= x_offset;
 | 
						|
    --ferr;
 | 
						|
    --berr;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    nofact = lsame_(fact, "N");
 | 
						|
    equil = lsame_(fact, "E");
 | 
						|
    if (nofact || equil) {
 | 
						|
	*(unsigned char *)equed = 'N';
 | 
						|
	rcequ = FALSE_;
 | 
						|
    } else {
 | 
						|
	rcequ = lsame_(equed, "Y");
 | 
						|
	smlnum = slamch_("Safe minimum");
 | 
						|
	bignum = 1.f / smlnum;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    if (! nofact && ! equil && ! lsame_(fact, "F")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 
 | 
						|
	    "L")) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*nrhs < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
 | 
						|
	    equed, "N"))) {
 | 
						|
	*info = -7;
 | 
						|
    } else {
 | 
						|
	if (rcequ) {
 | 
						|
	    smin = bignum;
 | 
						|
	    smax = 0.f;
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
/* Computing MIN */
 | 
						|
		r__1 = smin, r__2 = s[j];
 | 
						|
		smin = f2cmin(r__1,r__2);
 | 
						|
/* Computing MAX */
 | 
						|
		r__1 = smax, r__2 = s[j];
 | 
						|
		smax = f2cmax(r__1,r__2);
 | 
						|
/* L10: */
 | 
						|
	    }
 | 
						|
	    if (smin <= 0.f) {
 | 
						|
		*info = -8;
 | 
						|
	    } else if (*n > 0) {
 | 
						|
		scond = f2cmax(smin,smlnum) / f2cmin(smax,bignum);
 | 
						|
	    } else {
 | 
						|
		scond = 1.f;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (*info == 0) {
 | 
						|
	    if (*ldb < f2cmax(1,*n)) {
 | 
						|
		*info = -10;
 | 
						|
	    } else if (*ldx < f2cmax(1,*n)) {
 | 
						|
		*info = -12;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SPPSVX", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (equil) {
 | 
						|
 | 
						|
/*        Compute row and column scalings to equilibrate the matrix A. */
 | 
						|
 | 
						|
	sppequ_(uplo, n, &ap[1], &s[1], &scond, &amax, &infequ);
 | 
						|
	if (infequ == 0) {
 | 
						|
 | 
						|
/*           Equilibrate the matrix. */
 | 
						|
 | 
						|
	    slaqsp_(uplo, n, &ap[1], &s[1], &scond, &amax, equed);
 | 
						|
	    rcequ = lsame_(equed, "Y");
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Scale the right-hand side. */
 | 
						|
 | 
						|
    if (rcequ) {
 | 
						|
	i__1 = *nrhs;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = *n;
 | 
						|
	    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
/* L30: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (nofact || equil) {
 | 
						|
 | 
						|
/*        Compute the Cholesky factorization A = U**T * U or A = L * L**T. */
 | 
						|
 | 
						|
	i__1 = *n * (*n + 1) / 2;
 | 
						|
	scopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
 | 
						|
	spptrf_(uplo, n, &afp[1], info);
 | 
						|
 | 
						|
/*        Return if INFO is non-zero. */
 | 
						|
 | 
						|
	if (*info > 0) {
 | 
						|
	    *rcond = 0.f;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute the norm of the matrix A. */
 | 
						|
 | 
						|
    anorm = slansp_("I", uplo, n, &ap[1], &work[1]);
 | 
						|
 | 
						|
/*     Compute the reciprocal of the condition number of A. */
 | 
						|
 | 
						|
    sppcon_(uplo, n, &afp[1], &anorm, rcond, &work[1], &iwork[1], info);
 | 
						|
 | 
						|
/*     Compute the solution matrix X. */
 | 
						|
 | 
						|
    slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 | 
						|
    spptrs_(uplo, n, nrhs, &afp[1], &x[x_offset], ldx, info);
 | 
						|
 | 
						|
/*     Use iterative refinement to improve the computed solution and */
 | 
						|
/*     compute error bounds and backward error estimates for it. */
 | 
						|
 | 
						|
    spprfs_(uplo, n, nrhs, &ap[1], &afp[1], &b[b_offset], ldb, &x[x_offset], 
 | 
						|
	    ldx, &ferr[1], &berr[1], &work[1], &iwork[1], info);
 | 
						|
 | 
						|
/*     Transform the solution matrix X to a solution of the original */
 | 
						|
/*     system. */
 | 
						|
 | 
						|
    if (rcequ) {
 | 
						|
	i__1 = *nrhs;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    i__2 = *n;
 | 
						|
	    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
 | 
						|
/* L40: */
 | 
						|
	    }
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
	i__1 = *nrhs;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    ferr[j] /= scond;
 | 
						|
/* L60: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Set INFO = N+1 if the matrix is singular to working precision. */
 | 
						|
 | 
						|
    if (*rcond < slamch_("Epsilon")) {
 | 
						|
	*info = *n + 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of SPPSVX */
 | 
						|
 | 
						|
} /* sppsvx_ */
 | 
						|
 |