660 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			660 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
static real c_b32 = -1.f;
 | 
						|
static real c_b34 = 1.f;
 | 
						|
 | 
						|
/* > \brief \b SGGGLM */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SGGGLM + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggglm.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggglm.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggglm.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK, */
 | 
						|
/*                          INFO ) */
 | 
						|
 | 
						|
/*       INTEGER            INFO, LDA, LDB, LWORK, M, N, P */
 | 
						|
/*       REAL               A( LDA, * ), B( LDB, * ), D( * ), WORK( * ), */
 | 
						|
/*      $                   X( * ), Y( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SGGGLM solves a general Gauss-Markov linear model (GLM) problem: */
 | 
						|
/* > */
 | 
						|
/* >         minimize || y ||_2   subject to   d = A*x + B*y */
 | 
						|
/* >             x */
 | 
						|
/* > */
 | 
						|
/* > where A is an N-by-M matrix, B is an N-by-P matrix, and d is a */
 | 
						|
/* > given N-vector. It is assumed that M <= N <= M+P, and */
 | 
						|
/* > */
 | 
						|
/* >            rank(A) = M    and    rank( A B ) = N. */
 | 
						|
/* > */
 | 
						|
/* > Under these assumptions, the constrained equation is always */
 | 
						|
/* > consistent, and there is a unique solution x and a minimal 2-norm */
 | 
						|
/* > solution y, which is obtained using a generalized QR factorization */
 | 
						|
/* > of the matrices (A, B) given by */
 | 
						|
/* > */
 | 
						|
/* >    A = Q*(R),   B = Q*T*Z. */
 | 
						|
/* >          (0) */
 | 
						|
/* > */
 | 
						|
/* > In particular, if matrix B is square nonsingular, then the problem */
 | 
						|
/* > GLM is equivalent to the following weighted linear least squares */
 | 
						|
/* > problem */
 | 
						|
/* > */
 | 
						|
/* >              minimize || inv(B)*(d-A*x) ||_2 */
 | 
						|
/* >                  x */
 | 
						|
/* > */
 | 
						|
/* > where inv(B) denotes the inverse of B. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The number of rows of the matrices A and B.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] M */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          M is INTEGER */
 | 
						|
/* >          The number of columns of the matrix A.  0 <= M <= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] P */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          P is INTEGER */
 | 
						|
/* >          The number of columns of the matrix B.  P >= N-M. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is REAL array, dimension (LDA,M) */
 | 
						|
/* >          On entry, the N-by-M matrix A. */
 | 
						|
/* >          On exit, the upper triangular part of the array A contains */
 | 
						|
/* >          the M-by-M upper triangular matrix R. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A. LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is REAL array, dimension (LDB,P) */
 | 
						|
/* >          On entry, the N-by-P matrix B. */
 | 
						|
/* >          On exit, if N <= P, the upper triangle of the subarray */
 | 
						|
/* >          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; */
 | 
						|
/* >          if N > P, the elements on and above the (N-P)th subdiagonal */
 | 
						|
/* >          contain the N-by-P upper trapezoidal matrix T. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of the array B. LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] D */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D is REAL array, dimension (N) */
 | 
						|
/* >          On entry, D is the left hand side of the GLM equation. */
 | 
						|
/* >          On exit, D is destroyed. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] X */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X is REAL array, dimension (M) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] Y */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Y is REAL array, dimension (P) */
 | 
						|
/* > */
 | 
						|
/* >          On exit, X and Y are the solutions of the GLM problem. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The dimension of the array WORK. LWORK >= f2cmax(1,N+M+P). */
 | 
						|
/* >          For optimum performance, LWORK >= M+f2cmin(N,P)+f2cmax(N,P)*NB, */
 | 
						|
/* >          where NB is an upper bound for the optimal blocksizes for */
 | 
						|
/* >          SGEQRF, SGERQF, SORMQR and SORMRQ. */
 | 
						|
/* > */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >          only calculates the optimal size of the WORK array, returns */
 | 
						|
/* >          this value as the first entry of the WORK array, and no error */
 | 
						|
/* >          message related to LWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit. */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* >          = 1:  the upper triangular factor R associated with A in the */
 | 
						|
/* >                generalized QR factorization of the pair (A, B) is */
 | 
						|
/* >                singular, so that rank(A) < M; the least squares */
 | 
						|
/* >                solution could not be computed. */
 | 
						|
/* >          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal */
 | 
						|
/* >                factor T associated with B in the generalized QR */
 | 
						|
/* >                factorization of the pair (A, B) is singular, so that */
 | 
						|
/* >                rank( A B ) < N; the least squares solution could not */
 | 
						|
/* >                be computed. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup realOTHEReigen */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void sggglm_(integer *n, integer *m, integer *p, real *a, 
 | 
						|
	integer *lda, real *b, integer *ldb, real *d__, real *x, real *y, 
 | 
						|
	real *work, integer *lwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer lopt, i__;
 | 
						|
    extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *, 
 | 
						|
	    real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *);
 | 
						|
    integer nb, np;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *, ftnlen, ftnlen);
 | 
						|
    extern /* Subroutine */ void sggqrf_(integer *, integer *, integer *, real 
 | 
						|
	    *, integer *, real *, real *, integer *, real *, real *, integer *
 | 
						|
	    , integer *);
 | 
						|
    integer lwkmin, nb1, nb2, nb3, nb4, lwkopt;
 | 
						|
    logical lquery;
 | 
						|
    extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, real *, integer *, real *, real *, integer *, real *, 
 | 
						|
	    integer *, integer *), sormrq_(char *, char *, 
 | 
						|
	    integer *, integer *, integer *, real *, integer *, real *, real *
 | 
						|
	    , integer *, real *, integer *, integer *);
 | 
						|
    extern int strtrs_(char *, char *, char *, integer *, integer *, real *, 
 | 
						|
	    integer *, real *, integer *, integer *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK driver routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  =================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    --d__;
 | 
						|
    --x;
 | 
						|
    --y;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    np = f2cmin(*n,*p);
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    if (*n < 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*m < 0 || *m > *n) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*p < 0 || *p < *n - *m) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*ldb < f2cmax(1,*n)) {
 | 
						|
	*info = -7;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Calculate workspace */
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
	if (*n == 0) {
 | 
						|
	    lwkmin = 1;
 | 
						|
	    lwkopt = 1;
 | 
						|
	} else {
 | 
						|
	    nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, m, &c_n1, &c_n1, (ftnlen)6,
 | 
						|
		     (ftnlen)1);
 | 
						|
	    nb2 = ilaenv_(&c__1, "SGERQF", " ", n, m, &c_n1, &c_n1, (ftnlen)6,
 | 
						|
		     (ftnlen)1);
 | 
						|
	    nb3 = ilaenv_(&c__1, "SORMQR", " ", n, m, p, &c_n1, (ftnlen)6, (
 | 
						|
		    ftnlen)1);
 | 
						|
	    nb4 = ilaenv_(&c__1, "SORMRQ", " ", n, m, p, &c_n1, (ftnlen)6, (
 | 
						|
		    ftnlen)1);
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = f2cmax(nb1,nb2), i__1 = f2cmax(i__1,nb3);
 | 
						|
	    nb = f2cmax(i__1,nb4);
 | 
						|
	    lwkmin = *m + *n + *p;
 | 
						|
	    lwkopt = *m + np + f2cmax(*n,*p) * nb;
 | 
						|
	}
 | 
						|
	work[1] = (real) lwkopt;
 | 
						|
 | 
						|
	if (*lwork < lwkmin && ! lquery) {
 | 
						|
	    *info = -12;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SGGGLM", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    } else if (lquery) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	i__1 = *m;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    x[i__] = 0.f;
 | 
						|
	}
 | 
						|
	i__1 = *p;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    y[i__] = 0.f;
 | 
						|
	}
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute the GQR factorization of matrices A and B: */
 | 
						|
 | 
						|
/*          Q**T*A = ( R11 ) M,    Q**T*B*Z**T = ( T11   T12 ) M */
 | 
						|
/*                   (  0  ) N-M                 (  0    T22 ) N-M */
 | 
						|
/*                      M                         M+P-N  N-M */
 | 
						|
 | 
						|
/*     where R11 and T22 are upper triangular, and Q and Z are */
 | 
						|
/*     orthogonal. */
 | 
						|
 | 
						|
    i__1 = *lwork - *m - np;
 | 
						|
    sggqrf_(n, m, p, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[*m 
 | 
						|
	    + 1], &work[*m + np + 1], &i__1, info);
 | 
						|
    lopt = work[*m + np + 1];
 | 
						|
 | 
						|
/*     Update left-hand-side vector d = Q**T*d = ( d1 ) M */
 | 
						|
/*                                               ( d2 ) N-M */
 | 
						|
 | 
						|
    i__1 = f2cmax(1,*n);
 | 
						|
    i__2 = *lwork - *m - np;
 | 
						|
    sormqr_("Left", "Transpose", n, &c__1, m, &a[a_offset], lda, &work[1], &
 | 
						|
	    d__[1], &i__1, &work[*m + np + 1], &i__2, info);
 | 
						|
/* Computing MAX */
 | 
						|
    i__1 = lopt, i__2 = (integer) work[*m + np + 1];
 | 
						|
    lopt = f2cmax(i__1,i__2);
 | 
						|
 | 
						|
/*     Solve T22*y2 = d2 for y2 */
 | 
						|
 | 
						|
    if (*n > *m) {
 | 
						|
	i__1 = *n - *m;
 | 
						|
	i__2 = *n - *m;
 | 
						|
	strtrs_("Upper", "No transpose", "Non unit", &i__1, &c__1, &b[*m + 1 
 | 
						|
		+ (*m + *p - *n + 1) * b_dim1], ldb, &d__[*m + 1], &i__2, 
 | 
						|
		info);
 | 
						|
 | 
						|
	if (*info > 0) {
 | 
						|
	    *info = 1;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
 | 
						|
	i__1 = *n - *m;
 | 
						|
	scopy_(&i__1, &d__[*m + 1], &c__1, &y[*m + *p - *n + 1], &c__1);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Set y1 = 0 */
 | 
						|
 | 
						|
    i__1 = *m + *p - *n;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	y[i__] = 0.f;
 | 
						|
/* L10: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Update d1 = d1 - T12*y2 */
 | 
						|
 | 
						|
    i__1 = *n - *m;
 | 
						|
    sgemv_("No transpose", m, &i__1, &c_b32, &b[(*m + *p - *n + 1) * b_dim1 + 
 | 
						|
	    1], ldb, &y[*m + *p - *n + 1], &c__1, &c_b34, &d__[1], &c__1);
 | 
						|
 | 
						|
/*     Solve triangular system: R11*x = d1 */
 | 
						|
 | 
						|
    if (*m > 0) {
 | 
						|
	strtrs_("Upper", "No Transpose", "Non unit", m, &c__1, &a[a_offset], 
 | 
						|
		lda, &d__[1], m, info);
 | 
						|
 | 
						|
	if (*info > 0) {
 | 
						|
	    *info = 2;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Copy D to X */
 | 
						|
 | 
						|
	scopy_(m, &d__[1], &c__1, &x[1], &c__1);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Backward transformation y = Z**T *y */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
    i__1 = 1, i__2 = *n - *p + 1;
 | 
						|
    i__3 = f2cmax(1,*p);
 | 
						|
    i__4 = *lwork - *m - np;
 | 
						|
    sormrq_("Left", "Transpose", p, &c__1, &np, &b[f2cmax(i__1,i__2) + b_dim1], 
 | 
						|
	    ldb, &work[*m + 1], &y[1], &i__3, &work[*m + np + 1], &i__4, info);
 | 
						|
/* Computing MAX */
 | 
						|
    i__1 = lopt, i__2 = (integer) work[*m + np + 1];
 | 
						|
    work[1] = (real) (*m + np + f2cmax(i__1,i__2));
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of SGGGLM */
 | 
						|
 | 
						|
} /* sggglm_ */
 | 
						|
 |