1070 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1070 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c__0 = 0;
 | 
						|
static integer c_n1 = -1;
 | 
						|
 | 
						|
/* > \brief <b> SGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
 | 
						|
rices</b> */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SGEEVX + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeevx.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeevx.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeevx.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI, */
 | 
						|
/*                          VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, */
 | 
						|
/*                          RCONDE, RCONDV, WORK, LWORK, IWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          BALANC, JOBVL, JOBVR, SENSE */
 | 
						|
/*       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N */
 | 
						|
/*       REAL               ABNRM */
 | 
						|
/*       INTEGER            IWORK( * ) */
 | 
						|
/*       REAL               A( LDA, * ), RCONDE( * ), RCONDV( * ), */
 | 
						|
/*      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ), */
 | 
						|
/*      $                   WI( * ), WORK( * ), WR( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SGEEVX computes for an N-by-N real nonsymmetric matrix A, the */
 | 
						|
/* > eigenvalues and, optionally, the left and/or right eigenvectors. */
 | 
						|
/* > */
 | 
						|
/* > Optionally also, it computes a balancing transformation to improve */
 | 
						|
/* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
 | 
						|
/* > SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
 | 
						|
/* > (RCONDE), and reciprocal condition numbers for the right */
 | 
						|
/* > eigenvectors (RCONDV). */
 | 
						|
/* > */
 | 
						|
/* > The right eigenvector v(j) of A satisfies */
 | 
						|
/* >                  A * v(j) = lambda(j) * v(j) */
 | 
						|
/* > where lambda(j) is its eigenvalue. */
 | 
						|
/* > The left eigenvector u(j) of A satisfies */
 | 
						|
/* >               u(j)**H * A = lambda(j) * u(j)**H */
 | 
						|
/* > where u(j)**H denotes the conjugate-transpose of u(j). */
 | 
						|
/* > */
 | 
						|
/* > The computed eigenvectors are normalized to have Euclidean norm */
 | 
						|
/* > equal to 1 and largest component real. */
 | 
						|
/* > */
 | 
						|
/* > Balancing a matrix means permuting the rows and columns to make it */
 | 
						|
/* > more nearly upper triangular, and applying a diagonal similarity */
 | 
						|
/* > transformation D * A * D**(-1), where D is a diagonal matrix, to */
 | 
						|
/* > make its rows and columns closer in norm and the condition numbers */
 | 
						|
/* > of its eigenvalues and eigenvectors smaller.  The computed */
 | 
						|
/* > reciprocal condition numbers correspond to the balanced matrix. */
 | 
						|
/* > Permuting rows and columns will not change the condition numbers */
 | 
						|
/* > (in exact arithmetic) but diagonal scaling will.  For further */
 | 
						|
/* > explanation of balancing, see section 4.10.2 of the LAPACK */
 | 
						|
/* > Users' Guide. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] BALANC */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BALANC is CHARACTER*1 */
 | 
						|
/* >          Indicates how the input matrix should be diagonally scaled */
 | 
						|
/* >          and/or permuted to improve the conditioning of its */
 | 
						|
/* >          eigenvalues. */
 | 
						|
/* >          = 'N': Do not diagonally scale or permute; */
 | 
						|
/* >          = 'P': Perform permutations to make the matrix more nearly */
 | 
						|
/* >                 upper triangular. Do not diagonally scale; */
 | 
						|
/* >          = 'S': Diagonally scale the matrix, i.e. replace A by */
 | 
						|
/* >                 D*A*D**(-1), where D is a diagonal matrix chosen */
 | 
						|
/* >                 to make the rows and columns of A more equal in */
 | 
						|
/* >                 norm. Do not permute; */
 | 
						|
/* >          = 'B': Both diagonally scale and permute A. */
 | 
						|
/* > */
 | 
						|
/* >          Computed reciprocal condition numbers will be for the matrix */
 | 
						|
/* >          after balancing and/or permuting. Permuting does not change */
 | 
						|
/* >          condition numbers (in exact arithmetic), but balancing does. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] JOBVL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVL is CHARACTER*1 */
 | 
						|
/* >          = 'N': left eigenvectors of A are not computed; */
 | 
						|
/* >          = 'V': left eigenvectors of A are computed. */
 | 
						|
/* >          If SENSE = 'E' or 'B', JOBVL must = 'V'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] JOBVR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVR is CHARACTER*1 */
 | 
						|
/* >          = 'N': right eigenvectors of A are not computed; */
 | 
						|
/* >          = 'V': right eigenvectors of A are computed. */
 | 
						|
/* >          If SENSE = 'E' or 'B', JOBVR must = 'V'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] SENSE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SENSE is CHARACTER*1 */
 | 
						|
/* >          Determines which reciprocal condition numbers are computed. */
 | 
						|
/* >          = 'N': None are computed; */
 | 
						|
/* >          = 'E': Computed for eigenvalues only; */
 | 
						|
/* >          = 'V': Computed for right eigenvectors only; */
 | 
						|
/* >          = 'B': Computed for eigenvalues and right eigenvectors. */
 | 
						|
/* > */
 | 
						|
/* >          If SENSE = 'E' or 'B', both left and right eigenvectors */
 | 
						|
/* >          must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A. N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is REAL array, dimension (LDA,N) */
 | 
						|
/* >          On entry, the N-by-N matrix A. */
 | 
						|
/* >          On exit, A has been overwritten.  If JOBVL = 'V' or */
 | 
						|
/* >          JOBVR = 'V', A contains the real Schur form of the balanced */
 | 
						|
/* >          version of the input matrix A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WR is REAL array, dimension (N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WI is REAL array, dimension (N) */
 | 
						|
/* >          WR and WI contain the real and imaginary parts, */
 | 
						|
/* >          respectively, of the computed eigenvalues.  Complex */
 | 
						|
/* >          conjugate pairs of eigenvalues will appear consecutively */
 | 
						|
/* >          with the eigenvalue having the positive imaginary part */
 | 
						|
/* >          first. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VL is REAL array, dimension (LDVL,N) */
 | 
						|
/* >          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
 | 
						|
/* >          after another in the columns of VL, in the same order */
 | 
						|
/* >          as their eigenvalues. */
 | 
						|
/* >          If JOBVL = 'N', VL is not referenced. */
 | 
						|
/* >          If the j-th eigenvalue is real, then u(j) = VL(:,j), */
 | 
						|
/* >          the j-th column of VL. */
 | 
						|
/* >          If the j-th and (j+1)-st eigenvalues form a complex */
 | 
						|
/* >          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
 | 
						|
/* >          u(j+1) = VL(:,j) - i*VL(:,j+1). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVL is INTEGER */
 | 
						|
/* >          The leading dimension of the array VL.  LDVL >= 1; if */
 | 
						|
/* >          JOBVL = 'V', LDVL >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VR is REAL array, dimension (LDVR,N) */
 | 
						|
/* >          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
 | 
						|
/* >          after another in the columns of VR, in the same order */
 | 
						|
/* >          as their eigenvalues. */
 | 
						|
/* >          If JOBVR = 'N', VR is not referenced. */
 | 
						|
/* >          If the j-th eigenvalue is real, then v(j) = VR(:,j), */
 | 
						|
/* >          the j-th column of VR. */
 | 
						|
/* >          If the j-th and (j+1)-st eigenvalues form a complex */
 | 
						|
/* >          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
 | 
						|
/* >          v(j+1) = VR(:,j) - i*VR(:,j+1). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVR is INTEGER */
 | 
						|
/* >          The leading dimension of the array VR.  LDVR >= 1, and if */
 | 
						|
/* >          JOBVR = 'V', LDVR >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ILO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ILO is INTEGER */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IHI */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IHI is INTEGER */
 | 
						|
/* >          ILO and IHI are integer values determined when A was */
 | 
						|
/* >          balanced.  The balanced A(i,j) = 0 if I > J and */
 | 
						|
/* >          J = 1,...,ILO-1 or I = IHI+1,...,N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] SCALE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SCALE is REAL array, dimension (N) */
 | 
						|
/* >          Details of the permutations and scaling factors applied */
 | 
						|
/* >          when balancing A.  If P(j) is the index of the row and column */
 | 
						|
/* >          interchanged with row and column j, and D(j) is the scaling */
 | 
						|
/* >          factor applied to row and column j, then */
 | 
						|
/* >          SCALE(J) = P(J),    for J = 1,...,ILO-1 */
 | 
						|
/* >                   = D(J),    for J = ILO,...,IHI */
 | 
						|
/* >                   = P(J)     for J = IHI+1,...,N. */
 | 
						|
/* >          The order in which the interchanges are made is N to IHI+1, */
 | 
						|
/* >          then 1 to ILO-1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ABNRM */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ABNRM is REAL */
 | 
						|
/* >          The one-norm of the balanced matrix (the maximum */
 | 
						|
/* >          of the sum of absolute values of elements of any column). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RCONDE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RCONDE is REAL array, dimension (N) */
 | 
						|
/* >          RCONDE(j) is the reciprocal condition number of the j-th */
 | 
						|
/* >          eigenvalue. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RCONDV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RCONDV is REAL array, dimension (N) */
 | 
						|
/* >          RCONDV(j) is the reciprocal condition number of the j-th */
 | 
						|
/* >          right eigenvector. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The dimension of the array WORK.   If SENSE = 'N' or 'E', */
 | 
						|
/* >          LWORK >= f2cmax(1,2*N), and if JOBVL = 'V' or JOBVR = 'V', */
 | 
						|
/* >          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6). */
 | 
						|
/* >          For good performance, LWORK must generally be larger. */
 | 
						|
/* > */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >          only calculates the optimal size of the WORK array, returns */
 | 
						|
/* >          this value as the first entry of the WORK array, and no error */
 | 
						|
/* >          message related to LWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array, dimension (2*N-2) */
 | 
						|
/* >          If SENSE = 'N' or 'E', not referenced. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* >          > 0:  if INFO = i, the QR algorithm failed to compute all the */
 | 
						|
/* >                eigenvalues, and no eigenvectors or condition numbers */
 | 
						|
/* >                have been computed; elements 1:ILO-1 and i+1:N of WR */
 | 
						|
/* >                and WI contain eigenvalues which have converged. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date June 2016 */
 | 
						|
 | 
						|
/*  @generated from dgeevx.f, fortran d -> s, Tue Apr 19 01:47:44 2016 */
 | 
						|
 | 
						|
/* > \ingroup realGEeigen */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void sgeevx_(char *balanc, char *jobvl, char *jobvr, char *
 | 
						|
	sense, integer *n, real *a, integer *lda, real *wr, real *wi, real *
 | 
						|
	vl, integer *ldvl, real *vr, integer *ldvr, integer *ilo, integer *
 | 
						|
	ihi, real *scale, real *abnrm, real *rconde, real *rcondv, real *work,
 | 
						|
	 integer *lwork, integer *iwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, 
 | 
						|
	    i__2, i__3;
 | 
						|
    real r__1, r__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    char side[1];
 | 
						|
    real anrm;
 | 
						|
    integer ierr, itau, iwrk, nout;
 | 
						|
    extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *, real *, real *);
 | 
						|
    extern real snrm2_(integer *, real *, integer *);
 | 
						|
    integer i__, k;
 | 
						|
    real r__;
 | 
						|
    integer icond;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | 
						|
    extern real slapy2_(real *, real *);
 | 
						|
    real cs;
 | 
						|
    extern /* Subroutine */ void slabad_(real *, real *);
 | 
						|
    logical scalea;
 | 
						|
    real cscale;
 | 
						|
    extern /* Subroutine */ void sgebak_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *, 
 | 
						|
	    integer *, integer *, real *, integer *);
 | 
						|
    real sn;
 | 
						|
    extern real slamch_(char *), slange_(char *, integer *, integer *,
 | 
						|
	     real *, integer *, real *);
 | 
						|
    extern /* Subroutine */ void sgehrd_(integer *, integer *, integer *, real 
 | 
						|
	    *, integer *, real *, real *, integer *, integer *);
 | 
						|
    extern int xerbla_(char *, integer *, ftnlen);
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *, ftnlen, ftnlen);
 | 
						|
    logical select[1];
 | 
						|
    real bignum;
 | 
						|
    extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | 
						|
	    real *, integer *, integer *, real *, integer *, integer *);
 | 
						|
    extern integer isamax_(integer *, real *, integer *);
 | 
						|
    extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *, 
 | 
						|
	    integer *, real *, integer *), slartg_(real *, real *, 
 | 
						|
	    real *, real *, real *), sorghr_(integer *, integer *, integer *, 
 | 
						|
	    real *, integer *, real *, real *, integer *, integer *), shseqr_(
 | 
						|
	    char *, char *, integer *, integer *, integer *, real *, integer *
 | 
						|
	    , real *, real *, real *, integer *, real *, integer *, integer *);
 | 
						|
    integer minwrk, maxwrk;
 | 
						|
    extern /* Subroutine */ void strsna_(char *, char *, logical *, integer *, 
 | 
						|
	    real *, integer *, real *, integer *, real *, integer *, real *, 
 | 
						|
	    real *, integer *, integer *, real *, integer *, integer *, 
 | 
						|
	    integer *);
 | 
						|
    logical wantvl, wntsnb;
 | 
						|
    integer hswork;
 | 
						|
    logical wntsne;
 | 
						|
    real smlnum;
 | 
						|
    logical lquery, wantvr, wntsnn, wntsnv;
 | 
						|
    extern /* Subroutine */ void strevc3_(char *, char *, logical *, integer *,
 | 
						|
	     real *, integer *, real *, integer *, real *, integer *, integer 
 | 
						|
	    *, integer *, real *, integer *, integer *);
 | 
						|
    char job[1];
 | 
						|
    real scl, dum[1], eps;
 | 
						|
    integer lwork_trevc__;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK driver routine (version 3.7.1) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     June 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input arguments */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --wr;
 | 
						|
    --wi;
 | 
						|
    vl_dim1 = *ldvl;
 | 
						|
    vl_offset = 1 + vl_dim1 * 1;
 | 
						|
    vl -= vl_offset;
 | 
						|
    vr_dim1 = *ldvr;
 | 
						|
    vr_offset = 1 + vr_dim1 * 1;
 | 
						|
    vr -= vr_offset;
 | 
						|
    --scale;
 | 
						|
    --rconde;
 | 
						|
    --rcondv;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    wantvl = lsame_(jobvl, "V");
 | 
						|
    wantvr = lsame_(jobvr, "V");
 | 
						|
    wntsnn = lsame_(sense, "N");
 | 
						|
    wntsne = lsame_(sense, "E");
 | 
						|
    wntsnv = lsame_(sense, "V");
 | 
						|
    wntsnb = lsame_(sense, "B");
 | 
						|
    if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P") 
 | 
						|
	    || lsame_(balanc, "B"))) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! wantvl && ! lsame_(jobvl, "N")) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (! wantvr && ! lsame_(jobvr, "N")) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb) 
 | 
						|
	    && ! (wantvl && wantvr)) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
 | 
						|
	*info = -11;
 | 
						|
    } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
 | 
						|
	*info = -13;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute workspace */
 | 
						|
/*      (Note: Comments in the code beginning "Workspace:" describe the */
 | 
						|
/*       minimal amount of workspace needed at that point in the code, */
 | 
						|
/*       as well as the preferred amount for good performance. */
 | 
						|
/*       NB refers to the optimal block size for the immediately */
 | 
						|
/*       following subroutine, as returned by ILAENV. */
 | 
						|
/*       HSWORK refers to the workspace preferred by SHSEQR, as */
 | 
						|
/*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
 | 
						|
/*       the worst case.) */
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
	if (*n == 0) {
 | 
						|
	    minwrk = 1;
 | 
						|
	    maxwrk = 1;
 | 
						|
	} else {
 | 
						|
	    maxwrk = *n + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1, n, &
 | 
						|
		    c__0, (ftnlen)6, (ftnlen)1);
 | 
						|
 | 
						|
	    if (wantvl) {
 | 
						|
		strevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
 | 
						|
			vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
 | 
						|
			work[1], &c_n1, &ierr);
 | 
						|
		lwork_trevc__ = (integer) work[1];
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = maxwrk, i__2 = *n + lwork_trevc__;
 | 
						|
		maxwrk = f2cmax(i__1,i__2);
 | 
						|
		shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
 | 
						|
			1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
 | 
						|
	    } else if (wantvr) {
 | 
						|
		strevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
 | 
						|
			vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
 | 
						|
			work[1], &c_n1, &ierr);
 | 
						|
		lwork_trevc__ = (integer) work[1];
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = maxwrk, i__2 = *n + lwork_trevc__;
 | 
						|
		maxwrk = f2cmax(i__1,i__2);
 | 
						|
		shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
 | 
						|
			1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
 | 
						|
	    } else {
 | 
						|
		if (wntsnn) {
 | 
						|
		    shseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
 | 
						|
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
 | 
						|
			    info);
 | 
						|
		} else {
 | 
						|
		    shseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], 
 | 
						|
			    &wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1, 
 | 
						|
			    info);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    hswork = (integer) work[1];
 | 
						|
 | 
						|
	    if (! wantvl && ! wantvr) {
 | 
						|
		minwrk = *n << 1;
 | 
						|
		if (! wntsnn) {
 | 
						|
/* Computing MAX */
 | 
						|
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
 | 
						|
		    minwrk = f2cmax(i__1,i__2);
 | 
						|
		}
 | 
						|
		maxwrk = f2cmax(maxwrk,hswork);
 | 
						|
		if (! wntsnn) {
 | 
						|
/* Computing MAX */
 | 
						|
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
 | 
						|
		    maxwrk = f2cmax(i__1,i__2);
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		minwrk = *n * 3;
 | 
						|
		if (! wntsnn && ! wntsne) {
 | 
						|
/* Computing MAX */
 | 
						|
		    i__1 = minwrk, i__2 = *n * *n + *n * 6;
 | 
						|
		    minwrk = f2cmax(i__1,i__2);
 | 
						|
		}
 | 
						|
		maxwrk = f2cmax(maxwrk,hswork);
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "SORGHR",
 | 
						|
			 " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
 | 
						|
		maxwrk = f2cmax(i__1,i__2);
 | 
						|
		if (! wntsnn && ! wntsne) {
 | 
						|
/* Computing MAX */
 | 
						|
		    i__1 = maxwrk, i__2 = *n * *n + *n * 6;
 | 
						|
		    maxwrk = f2cmax(i__1,i__2);
 | 
						|
		}
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = maxwrk, i__2 = *n * 3;
 | 
						|
		maxwrk = f2cmax(i__1,i__2);
 | 
						|
	    }
 | 
						|
	    maxwrk = f2cmax(maxwrk,minwrk);
 | 
						|
	}
 | 
						|
	work[1] = (real) maxwrk;
 | 
						|
 | 
						|
	if (*lwork < minwrk && ! lquery) {
 | 
						|
	    *info = -21;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SGEEVX", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    } else if (lquery) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants */
 | 
						|
 | 
						|
    eps = slamch_("P");
 | 
						|
    smlnum = slamch_("S");
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
    slabad_(&smlnum, &bignum);
 | 
						|
    smlnum = sqrt(smlnum) / eps;
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
 | 
						|
/*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | 
						|
 | 
						|
    icond = 0;
 | 
						|
    anrm = slange_("M", n, n, &a[a_offset], lda, dum);
 | 
						|
    scalea = FALSE_;
 | 
						|
    if (anrm > 0.f && anrm < smlnum) {
 | 
						|
	scalea = TRUE_;
 | 
						|
	cscale = smlnum;
 | 
						|
    } else if (anrm > bignum) {
 | 
						|
	scalea = TRUE_;
 | 
						|
	cscale = bignum;
 | 
						|
    }
 | 
						|
    if (scalea) {
 | 
						|
	slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Balance the matrix and compute ABNRM */
 | 
						|
 | 
						|
    sgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
 | 
						|
    *abnrm = slange_("1", n, n, &a[a_offset], lda, dum);
 | 
						|
    if (scalea) {
 | 
						|
	dum[0] = *abnrm;
 | 
						|
	slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
 | 
						|
		ierr);
 | 
						|
	*abnrm = dum[0];
 | 
						|
    }
 | 
						|
 | 
						|
/*     Reduce to upper Hessenberg form */
 | 
						|
/*     (Workspace: need 2*N, prefer N+N*NB) */
 | 
						|
 | 
						|
    itau = 1;
 | 
						|
    iwrk = itau + *n;
 | 
						|
    i__1 = *lwork - iwrk + 1;
 | 
						|
    sgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
 | 
						|
	    ierr);
 | 
						|
 | 
						|
    if (wantvl) {
 | 
						|
 | 
						|
/*        Want left eigenvectors */
 | 
						|
/*        Copy Householder vectors to VL */
 | 
						|
 | 
						|
	*(unsigned char *)side = 'L';
 | 
						|
	slacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
 | 
						|
		;
 | 
						|
 | 
						|
/*        Generate orthogonal matrix in VL */
 | 
						|
/*        (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
 | 
						|
 | 
						|
	i__1 = *lwork - iwrk + 1;
 | 
						|
	sorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
 | 
						|
		i__1, &ierr);
 | 
						|
 | 
						|
/*        Perform QR iteration, accumulating Schur vectors in VL */
 | 
						|
/*        (Workspace: need 1, prefer HSWORK (see comments) ) */
 | 
						|
 | 
						|
	iwrk = itau;
 | 
						|
	i__1 = *lwork - iwrk + 1;
 | 
						|
	shseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
 | 
						|
		vl_offset], ldvl, &work[iwrk], &i__1, info);
 | 
						|
 | 
						|
	if (wantvr) {
 | 
						|
 | 
						|
/*           Want left and right eigenvectors */
 | 
						|
/*           Copy Schur vectors to VR */
 | 
						|
 | 
						|
	    *(unsigned char *)side = 'B';
 | 
						|
	    slacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
 | 
						|
	}
 | 
						|
 | 
						|
    } else if (wantvr) {
 | 
						|
 | 
						|
/*        Want right eigenvectors */
 | 
						|
/*        Copy Householder vectors to VR */
 | 
						|
 | 
						|
	*(unsigned char *)side = 'R';
 | 
						|
	slacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
 | 
						|
		;
 | 
						|
 | 
						|
/*        Generate orthogonal matrix in VR */
 | 
						|
/*        (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
 | 
						|
 | 
						|
	i__1 = *lwork - iwrk + 1;
 | 
						|
	sorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
 | 
						|
		i__1, &ierr);
 | 
						|
 | 
						|
/*        Perform QR iteration, accumulating Schur vectors in VR */
 | 
						|
/*        (Workspace: need 1, prefer HSWORK (see comments) ) */
 | 
						|
 | 
						|
	iwrk = itau;
 | 
						|
	i__1 = *lwork - iwrk + 1;
 | 
						|
	shseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
 | 
						|
		vr_offset], ldvr, &work[iwrk], &i__1, info);
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Compute eigenvalues only */
 | 
						|
/*        If condition numbers desired, compute Schur form */
 | 
						|
 | 
						|
	if (wntsnn) {
 | 
						|
	    *(unsigned char *)job = 'E';
 | 
						|
	} else {
 | 
						|
	    *(unsigned char *)job = 'S';
 | 
						|
	}
 | 
						|
 | 
						|
/*        (Workspace: need 1, prefer HSWORK (see comments) ) */
 | 
						|
 | 
						|
	iwrk = itau;
 | 
						|
	i__1 = *lwork - iwrk + 1;
 | 
						|
	shseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
 | 
						|
		vr_offset], ldvr, &work[iwrk], &i__1, info);
 | 
						|
    }
 | 
						|
 | 
						|
/*     If INFO .NE. 0 from SHSEQR, then quit */
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	goto L50;
 | 
						|
    }
 | 
						|
 | 
						|
    if (wantvl || wantvr) {
 | 
						|
 | 
						|
/*        Compute left and/or right eigenvectors */
 | 
						|
/*        (Workspace: need 3*N, prefer N + 2*N*NB) */
 | 
						|
 | 
						|
	i__1 = *lwork - iwrk + 1;
 | 
						|
	strevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], 
 | 
						|
		ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute condition numbers if desired */
 | 
						|
/*     (Workspace: need N*N+6*N unless SENSE = 'E') */
 | 
						|
 | 
						|
    if (! wntsnn) {
 | 
						|
	strsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset], 
 | 
						|
		ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout, 
 | 
						|
		&work[iwrk], n, &iwork[1], &icond);
 | 
						|
    }
 | 
						|
 | 
						|
    if (wantvl) {
 | 
						|
 | 
						|
/*        Undo balancing of left eigenvectors */
 | 
						|
 | 
						|
	sgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl, 
 | 
						|
		&ierr);
 | 
						|
 | 
						|
/*        Normalize left eigenvectors and make largest component real */
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    if (wi[i__] == 0.f) {
 | 
						|
		scl = 1.f / snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
 | 
						|
		sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
 | 
						|
	    } else if (wi[i__] > 0.f) {
 | 
						|
		r__1 = snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
 | 
						|
		r__2 = snrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
 | 
						|
		scl = 1.f / slapy2_(&r__1, &r__2);
 | 
						|
		sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
 | 
						|
		sscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
 | 
						|
		i__2 = *n;
 | 
						|
		for (k = 1; k <= i__2; ++k) {
 | 
						|
/* Computing 2nd power */
 | 
						|
		    r__1 = vl[k + i__ * vl_dim1];
 | 
						|
/* Computing 2nd power */
 | 
						|
		    r__2 = vl[k + (i__ + 1) * vl_dim1];
 | 
						|
		    work[k] = r__1 * r__1 + r__2 * r__2;
 | 
						|
/* L10: */
 | 
						|
		}
 | 
						|
		k = isamax_(n, &work[1], &c__1);
 | 
						|
		slartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1], 
 | 
						|
			&cs, &sn, &r__);
 | 
						|
		srot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) * 
 | 
						|
			vl_dim1 + 1], &c__1, &cs, &sn);
 | 
						|
		vl[k + (i__ + 1) * vl_dim1] = 0.f;
 | 
						|
	    }
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (wantvr) {
 | 
						|
 | 
						|
/*        Undo balancing of right eigenvectors */
 | 
						|
 | 
						|
	sgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr, 
 | 
						|
		&ierr);
 | 
						|
 | 
						|
/*        Normalize right eigenvectors and make largest component real */
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    if (wi[i__] == 0.f) {
 | 
						|
		scl = 1.f / snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
 | 
						|
		sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
 | 
						|
	    } else if (wi[i__] > 0.f) {
 | 
						|
		r__1 = snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
 | 
						|
		r__2 = snrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
 | 
						|
		scl = 1.f / slapy2_(&r__1, &r__2);
 | 
						|
		sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
 | 
						|
		sscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
 | 
						|
		i__2 = *n;
 | 
						|
		for (k = 1; k <= i__2; ++k) {
 | 
						|
/* Computing 2nd power */
 | 
						|
		    r__1 = vr[k + i__ * vr_dim1];
 | 
						|
/* Computing 2nd power */
 | 
						|
		    r__2 = vr[k + (i__ + 1) * vr_dim1];
 | 
						|
		    work[k] = r__1 * r__1 + r__2 * r__2;
 | 
						|
/* L30: */
 | 
						|
		}
 | 
						|
		k = isamax_(n, &work[1], &c__1);
 | 
						|
		slartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1], 
 | 
						|
			&cs, &sn, &r__);
 | 
						|
		srot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) * 
 | 
						|
			vr_dim1 + 1], &c__1, &cs, &sn);
 | 
						|
		vr[k + (i__ + 1) * vr_dim1] = 0.f;
 | 
						|
	    }
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Undo scaling if necessary */
 | 
						|
 | 
						|
L50:
 | 
						|
    if (scalea) {
 | 
						|
	i__1 = *n - *info;
 | 
						|
/* Computing MAX */
 | 
						|
	i__3 = *n - *info;
 | 
						|
	i__2 = f2cmax(i__3,1);
 | 
						|
	slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info + 
 | 
						|
		1], &i__2, &ierr);
 | 
						|
	i__1 = *n - *info;
 | 
						|
/* Computing MAX */
 | 
						|
	i__3 = *n - *info;
 | 
						|
	i__2 = f2cmax(i__3,1);
 | 
						|
	slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info + 
 | 
						|
		1], &i__2, &ierr);
 | 
						|
	if (*info == 0) {
 | 
						|
	    if ((wntsnv || wntsnb) && icond == 0) {
 | 
						|
		slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
 | 
						|
			1], n, &ierr);
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    i__1 = *ilo - 1;
 | 
						|
	    slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1], 
 | 
						|
		    n, &ierr);
 | 
						|
	    i__1 = *ilo - 1;
 | 
						|
	    slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1], 
 | 
						|
		    n, &ierr);
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    work[1] = (real) maxwrk;
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of SGEEVX */
 | 
						|
 | 
						|
} /* sgeevx_ */
 | 
						|
 |