557 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			557 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static real c_b7 = -1.f;
 | 
						|
static integer c__1 = 1;
 | 
						|
static real c_b23 = 1.f;
 | 
						|
 | 
						|
/* > \brief \b SGBTRS */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SGBTRS + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbtrs.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbtrs.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbtrs.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, */
 | 
						|
/*                          INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          TRANS */
 | 
						|
/*       INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS */
 | 
						|
/*       INTEGER            IPIV( * ) */
 | 
						|
/*       REAL               AB( LDAB, * ), B( LDB, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SGBTRS solves a system of linear equations */
 | 
						|
/* >    A * X = B  or  A**T * X = B */
 | 
						|
/* > with a general band matrix A using the LU factorization computed */
 | 
						|
/* > by SGBTRF. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] TRANS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TRANS is CHARACTER*1 */
 | 
						|
/* >          Specifies the form of the system of equations. */
 | 
						|
/* >          = 'N':  A * X = B  (No transpose) */
 | 
						|
/* >          = 'T':  A**T* X = B  (Transpose) */
 | 
						|
/* >          = 'C':  A**T* X = B  (Conjugate transpose = Transpose) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] KL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          KL is INTEGER */
 | 
						|
/* >          The number of subdiagonals within the band of A.  KL >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] KU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          KU is INTEGER */
 | 
						|
/* >          The number of superdiagonals within the band of A.  KU >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NRHS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NRHS is INTEGER */
 | 
						|
/* >          The number of right hand sides, i.e., the number of columns */
 | 
						|
/* >          of the matrix B.  NRHS >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] AB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          AB is REAL array, dimension (LDAB,N) */
 | 
						|
/* >          Details of the LU factorization of the band matrix A, as */
 | 
						|
/* >          computed by SGBTRF.  U is stored as an upper triangular band */
 | 
						|
/* >          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
 | 
						|
/* >          the multipliers used during the factorization are stored in */
 | 
						|
/* >          rows KL+KU+2 to 2*KL+KU+1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDAB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDAB is INTEGER */
 | 
						|
/* >          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IPIV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IPIV is INTEGER array, dimension (N) */
 | 
						|
/* >          The pivot indices; for 1 <= i <= N, row i of the matrix was */
 | 
						|
/* >          interchanged with row IPIV(i). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is REAL array, dimension (LDB,NRHS) */
 | 
						|
/* >          On entry, the right hand side matrix B. */
 | 
						|
/* >          On exit, the solution matrix X. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup realGBcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void sgbtrs_(char *trans, integer *n, integer *kl, integer *
 | 
						|
	ku, integer *nrhs, real *ab, integer *ldab, integer *ipiv, real *b, 
 | 
						|
	integer *ldb, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer ab_dim1, ab_offset, b_dim1, b_offset, i__1, i__2, i__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    extern /* Subroutine */ void sger_(integer *, integer *, real *, real *, 
 | 
						|
	    integer *, real *, integer *, real *, integer *);
 | 
						|
    integer i__, j, l;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *, 
 | 
						|
	    real *, integer *, real *, integer *, real *, real *, integer *);
 | 
						|
    logical lnoti;
 | 
						|
    extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *), stbsv_(char *, char *, char *, integer *, integer *, 
 | 
						|
	    real *, integer *, real *, integer *);
 | 
						|
    integer kd, lm;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    logical notran;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    ab_dim1 = *ldab;
 | 
						|
    ab_offset = 1 + ab_dim1 * 1;
 | 
						|
    ab -= ab_offset;
 | 
						|
    --ipiv;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    notran = lsame_(trans, "N");
 | 
						|
    if (! notran && ! lsame_(trans, "T") && ! lsame_(
 | 
						|
	    trans, "C")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*kl < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*ku < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*nrhs < 0) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*ldab < (*kl << 1) + *ku + 1) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*ldb < f2cmax(1,*n)) {
 | 
						|
	*info = -10;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SGBTRS", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0 || *nrhs == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    kd = *ku + *kl + 1;
 | 
						|
    lnoti = *kl > 0;
 | 
						|
 | 
						|
    if (notran) {
 | 
						|
 | 
						|
/*        Solve  A*X = B. */
 | 
						|
 | 
						|
/*        Solve L*X = B, overwriting B with X. */
 | 
						|
 | 
						|
/*        L is represented as a product of permutations and unit lower */
 | 
						|
/*        triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1), */
 | 
						|
/*        where each transformation L(i) is a rank-one modification of */
 | 
						|
/*        the identity matrix. */
 | 
						|
 | 
						|
	if (lnoti) {
 | 
						|
	    i__1 = *n - 1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
/* Computing MIN */
 | 
						|
		i__2 = *kl, i__3 = *n - j;
 | 
						|
		lm = f2cmin(i__2,i__3);
 | 
						|
		l = ipiv[j];
 | 
						|
		if (l != j) {
 | 
						|
		    sswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
 | 
						|
		}
 | 
						|
		sger_(&lm, nrhs, &c_b7, &ab[kd + 1 + j * ab_dim1], &c__1, &b[
 | 
						|
			j + b_dim1], ldb, &b[j + 1 + b_dim1], ldb);
 | 
						|
/* L10: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	i__1 = *nrhs;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
 | 
						|
/*           Solve U*X = B, overwriting B with X. */
 | 
						|
 | 
						|
	    i__2 = *kl + *ku;
 | 
						|
	    stbsv_("Upper", "No transpose", "Non-unit", n, &i__2, &ab[
 | 
						|
		    ab_offset], ldab, &b[i__ * b_dim1 + 1], &c__1);
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Solve A**T*X = B. */
 | 
						|
 | 
						|
	i__1 = *nrhs;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
 | 
						|
/*           Solve U**T*X = B, overwriting B with X. */
 | 
						|
 | 
						|
	    i__2 = *kl + *ku;
 | 
						|
	    stbsv_("Upper", "Transpose", "Non-unit", n, &i__2, &ab[ab_offset],
 | 
						|
		     ldab, &b[i__ * b_dim1 + 1], &c__1);
 | 
						|
/* L30: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Solve L**T*X = B, overwriting B with X. */
 | 
						|
 | 
						|
	if (lnoti) {
 | 
						|
	    for (j = *n - 1; j >= 1; --j) {
 | 
						|
/* Computing MIN */
 | 
						|
		i__1 = *kl, i__2 = *n - j;
 | 
						|
		lm = f2cmin(i__1,i__2);
 | 
						|
		sgemv_("Transpose", &lm, nrhs, &c_b7, &b[j + 1 + b_dim1], ldb,
 | 
						|
			 &ab[kd + 1 + j * ab_dim1], &c__1, &c_b23, &b[j + 
 | 
						|
			b_dim1], ldb);
 | 
						|
		l = ipiv[j];
 | 
						|
		if (l != j) {
 | 
						|
		    sswap_(nrhs, &b[l + b_dim1], ldb, &b[j + b_dim1], ldb);
 | 
						|
		}
 | 
						|
/* L40: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of SGBTRS */
 | 
						|
 | 
						|
} /* sgbtrs_ */
 | 
						|
 |