1201 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1201 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
/* f2c.h  --  Standard Fortran to C header file */
 | 
						|
 | 
						|
/**  barf  [ba:rf]  2.  "He suggested using FORTRAN, and everybody barfed."
 | 
						|
 | 
						|
	- From The Shogakukan DICTIONARY OF NEW ENGLISH (Second edition) */
 | 
						|
 | 
						|
#ifndef F2C_INCLUDE
 | 
						|
#define F2C_INCLUDE
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conj(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimag(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c_n1 = -1;
 | 
						|
static integer c__0 = 0;
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* > \brief \b SGBRFSX */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SGBRFSX + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbrfsx
 | 
						|
.f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbrfsx
 | 
						|
.f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbrfsx
 | 
						|
.f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB, */
 | 
						|
/*                           LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND, */
 | 
						|
/*                           BERR, N_ERR_BNDS, ERR_BNDS_NORM, */
 | 
						|
/*                           ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, */
 | 
						|
/*                           INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          TRANS, EQUED */
 | 
						|
/*       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS, */
 | 
						|
/*      $                   NPARAMS, N_ERR_BNDS */
 | 
						|
/*       REAL               RCOND */
 | 
						|
/*       INTEGER            IPIV( * ), IWORK( * ) */
 | 
						|
/*       REAL               AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
 | 
						|
/*      $                   X( LDX , * ),WORK( * ) */
 | 
						|
/*       REAL               R( * ), C( * ), PARAMS( * ), BERR( * ), */
 | 
						|
/*      $                   ERR_BNDS_NORM( NRHS, * ), */
 | 
						|
/*      $                   ERR_BNDS_COMP( NRHS, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >    SGBRFSX improves the computed solution to a system of linear */
 | 
						|
/* >    equations and provides error bounds and backward error estimates */
 | 
						|
/* >    for the solution.  In addition to normwise error bound, the code */
 | 
						|
/* >    provides maximum componentwise error bound if possible.  See */
 | 
						|
/* >    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */
 | 
						|
/* >    error bounds. */
 | 
						|
/* > */
 | 
						|
/* >    The original system of linear equations may have been equilibrated */
 | 
						|
/* >    before calling this routine, as described by arguments EQUED, R */
 | 
						|
/* >    and C below. In this case, the solution and error bounds returned */
 | 
						|
/* >    are for the original unequilibrated system. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \verbatim */
 | 
						|
/* >     Some optional parameters are bundled in the PARAMS array.  These */
 | 
						|
/* >     settings determine how refinement is performed, but often the */
 | 
						|
/* >     defaults are acceptable.  If the defaults are acceptable, users */
 | 
						|
/* >     can pass NPARAMS = 0 which prevents the source code from accessing */
 | 
						|
/* >     the PARAMS argument. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] TRANS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TRANS is CHARACTER*1 */
 | 
						|
/* >     Specifies the form of the system of equations: */
 | 
						|
/* >       = 'N':  A * X = B     (No transpose) */
 | 
						|
/* >       = 'T':  A**T * X = B  (Transpose) */
 | 
						|
/* >       = 'C':  A**H * X = B  (Conjugate transpose = Transpose) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] EQUED */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          EQUED is CHARACTER*1 */
 | 
						|
/* >     Specifies the form of equilibration that was done to A */
 | 
						|
/* >     before calling this routine. This is needed to compute */
 | 
						|
/* >     the solution and error bounds correctly. */
 | 
						|
/* >       = 'N':  No equilibration */
 | 
						|
/* >       = 'R':  Row equilibration, i.e., A has been premultiplied by */
 | 
						|
/* >               diag(R). */
 | 
						|
/* >       = 'C':  Column equilibration, i.e., A has been postmultiplied */
 | 
						|
/* >               by diag(C). */
 | 
						|
/* >       = 'B':  Both row and column equilibration, i.e., A has been */
 | 
						|
/* >               replaced by diag(R) * A * diag(C). */
 | 
						|
/* >               The right hand side B has been changed accordingly. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >     The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] KL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          KL is INTEGER */
 | 
						|
/* >     The number of subdiagonals within the band of A.  KL >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] KU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          KU is INTEGER */
 | 
						|
/* >     The number of superdiagonals within the band of A.  KU >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NRHS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NRHS is INTEGER */
 | 
						|
/* >     The number of right hand sides, i.e., the number of columns */
 | 
						|
/* >     of the matrices B and X.  NRHS >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] AB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          AB is REAL array, dimension (LDAB,N) */
 | 
						|
/* >     The original band matrix A, stored in rows 1 to KL+KU+1. */
 | 
						|
/* >     The j-th column of A is stored in the j-th column of the */
 | 
						|
/* >     array AB as follows: */
 | 
						|
/* >     AB(ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(n,j+kl). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDAB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDAB is INTEGER */
 | 
						|
/* >     The leading dimension of the array AB.  LDAB >= KL+KU+1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] AFB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          AFB is REAL array, dimension (LDAFB,N) */
 | 
						|
/* >     Details of the LU factorization of the band matrix A, as */
 | 
						|
/* >     computed by DGBTRF.  U is stored as an upper triangular band */
 | 
						|
/* >     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and */
 | 
						|
/* >     the multipliers used during the factorization are stored in */
 | 
						|
/* >     rows KL+KU+2 to 2*KL+KU+1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDAFB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDAFB is INTEGER */
 | 
						|
/* >     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IPIV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IPIV is INTEGER array, dimension (N) */
 | 
						|
/* >     The pivot indices from SGETRF; for 1<=i<=N, row i of the */
 | 
						|
/* >     matrix was interchanged with row IPIV(i). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] R */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          R is REAL array, dimension (N) */
 | 
						|
/* >     The row scale factors for A.  If EQUED = 'R' or 'B', A is */
 | 
						|
/* >     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
 | 
						|
/* >     is not accessed.  R is an input argument if FACT = 'F'; */
 | 
						|
/* >     otherwise, R is an output argument.  If FACT = 'F' and */
 | 
						|
/* >     EQUED = 'R' or 'B', each element of R must be positive. */
 | 
						|
/* >     If R is output, each element of R is a power of the radix. */
 | 
						|
/* >     If R is input, each element of R should be a power of the radix */
 | 
						|
/* >     to ensure a reliable solution and error estimates. Scaling by */
 | 
						|
/* >     powers of the radix does not cause rounding errors unless the */
 | 
						|
/* >     result underflows or overflows. Rounding errors during scaling */
 | 
						|
/* >     lead to refining with a matrix that is not equivalent to the */
 | 
						|
/* >     input matrix, producing error estimates that may not be */
 | 
						|
/* >     reliable. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] C */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          C is REAL array, dimension (N) */
 | 
						|
/* >     The column scale factors for A.  If EQUED = 'C' or 'B', A is */
 | 
						|
/* >     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
 | 
						|
/* >     is not accessed.  C is an input argument if FACT = 'F'; */
 | 
						|
/* >     otherwise, C is an output argument.  If FACT = 'F' and */
 | 
						|
/* >     EQUED = 'C' or 'B', each element of C must be positive. */
 | 
						|
/* >     If C is output, each element of C is a power of the radix. */
 | 
						|
/* >     If C is input, each element of C should be a power of the radix */
 | 
						|
/* >     to ensure a reliable solution and error estimates. Scaling by */
 | 
						|
/* >     powers of the radix does not cause rounding errors unless the */
 | 
						|
/* >     result underflows or overflows. Rounding errors during scaling */
 | 
						|
/* >     lead to refining with a matrix that is not equivalent to the */
 | 
						|
/* >     input matrix, producing error estimates that may not be */
 | 
						|
/* >     reliable. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is REAL array, dimension (LDB,NRHS) */
 | 
						|
/* >     The right hand side matrix B. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >     The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] X */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X is REAL array, dimension (LDX,NRHS) */
 | 
						|
/* >     On entry, the solution matrix X, as computed by SGETRS. */
 | 
						|
/* >     On exit, the improved solution matrix X. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDX */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDX is INTEGER */
 | 
						|
/* >     The leading dimension of the array X.  LDX >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RCOND */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RCOND is REAL */
 | 
						|
/* >     Reciprocal scaled condition number.  This is an estimate of the */
 | 
						|
/* >     reciprocal Skeel condition number of the matrix A after */
 | 
						|
/* >     equilibration (if done).  If this is less than the machine */
 | 
						|
/* >     precision (in particular, if it is zero), the matrix is singular */
 | 
						|
/* >     to working precision.  Note that the error may still be small even */
 | 
						|
/* >     if this number is very small and the matrix appears ill- */
 | 
						|
/* >     conditioned. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] BERR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BERR is REAL array, dimension (NRHS) */
 | 
						|
/* >     Componentwise relative backward error.  This is the */
 | 
						|
/* >     componentwise relative backward error of each solution vector X(j) */
 | 
						|
/* >     (i.e., the smallest relative change in any element of A or B that */
 | 
						|
/* >     makes X(j) an exact solution). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N_ERR_BNDS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N_ERR_BNDS is INTEGER */
 | 
						|
/* >     Number of error bounds to return for each right hand side */
 | 
						|
/* >     and each type (normwise or componentwise).  See ERR_BNDS_NORM and */
 | 
						|
/* >     ERR_BNDS_COMP below. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ERR_BNDS_NORM */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) */
 | 
						|
/* >     For each right-hand side, this array contains information about */
 | 
						|
/* >     various error bounds and condition numbers corresponding to the */
 | 
						|
/* >     normwise relative error, which is defined as follows: */
 | 
						|
/* > */
 | 
						|
/* >     Normwise relative error in the ith solution vector: */
 | 
						|
/* >             max_j (abs(XTRUE(j,i) - X(j,i))) */
 | 
						|
/* >            ------------------------------ */
 | 
						|
/* >                  max_j abs(X(j,i)) */
 | 
						|
/* > */
 | 
						|
/* >     The array is indexed by the type of error information as described */
 | 
						|
/* >     below. There currently are up to three pieces of information */
 | 
						|
/* >     returned. */
 | 
						|
/* > */
 | 
						|
/* >     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
 | 
						|
/* >     right-hand side. */
 | 
						|
/* > */
 | 
						|
/* >     The second index in ERR_BNDS_NORM(:,err) contains the following */
 | 
						|
/* >     three fields: */
 | 
						|
/* >     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 | 
						|
/* >              reciprocal condition number is less than the threshold */
 | 
						|
/* >              sqrt(n) * slamch('Epsilon'). */
 | 
						|
/* > */
 | 
						|
/* >     err = 2 "Guaranteed" error bound: The estimated forward error, */
 | 
						|
/* >              almost certainly within a factor of 10 of the true error */
 | 
						|
/* >              so long as the next entry is greater than the threshold */
 | 
						|
/* >              sqrt(n) * slamch('Epsilon'). This error bound should only */
 | 
						|
/* >              be trusted if the previous boolean is true. */
 | 
						|
/* > */
 | 
						|
/* >     err = 3  Reciprocal condition number: Estimated normwise */
 | 
						|
/* >              reciprocal condition number.  Compared with the threshold */
 | 
						|
/* >              sqrt(n) * slamch('Epsilon') to determine if the error */
 | 
						|
/* >              estimate is "guaranteed". These reciprocal condition */
 | 
						|
/* >              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 | 
						|
/* >              appropriately scaled matrix Z. */
 | 
						|
/* >              Let Z = S*A, where S scales each row by a power of the */
 | 
						|
/* >              radix so all absolute row sums of Z are approximately 1. */
 | 
						|
/* > */
 | 
						|
/* >     See Lapack Working Note 165 for further details and extra */
 | 
						|
/* >     cautions. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ERR_BNDS_COMP */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) */
 | 
						|
/* >     For each right-hand side, this array contains information about */
 | 
						|
/* >     various error bounds and condition numbers corresponding to the */
 | 
						|
/* >     componentwise relative error, which is defined as follows: */
 | 
						|
/* > */
 | 
						|
/* >     Componentwise relative error in the ith solution vector: */
 | 
						|
/* >                    abs(XTRUE(j,i) - X(j,i)) */
 | 
						|
/* >             max_j ---------------------- */
 | 
						|
/* >                         abs(X(j,i)) */
 | 
						|
/* > */
 | 
						|
/* >     The array is indexed by the right-hand side i (on which the */
 | 
						|
/* >     componentwise relative error depends), and the type of error */
 | 
						|
/* >     information as described below. There currently are up to three */
 | 
						|
/* >     pieces of information returned for each right-hand side. If */
 | 
						|
/* >     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
 | 
						|
/* >     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most */
 | 
						|
/* >     the first (:,N_ERR_BNDS) entries are returned. */
 | 
						|
/* > */
 | 
						|
/* >     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
 | 
						|
/* >     right-hand side. */
 | 
						|
/* > */
 | 
						|
/* >     The second index in ERR_BNDS_COMP(:,err) contains the following */
 | 
						|
/* >     three fields: */
 | 
						|
/* >     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 | 
						|
/* >              reciprocal condition number is less than the threshold */
 | 
						|
/* >              sqrt(n) * slamch('Epsilon'). */
 | 
						|
/* > */
 | 
						|
/* >     err = 2 "Guaranteed" error bound: The estimated forward error, */
 | 
						|
/* >              almost certainly within a factor of 10 of the true error */
 | 
						|
/* >              so long as the next entry is greater than the threshold */
 | 
						|
/* >              sqrt(n) * slamch('Epsilon'). This error bound should only */
 | 
						|
/* >              be trusted if the previous boolean is true. */
 | 
						|
/* > */
 | 
						|
/* >     err = 3  Reciprocal condition number: Estimated componentwise */
 | 
						|
/* >              reciprocal condition number.  Compared with the threshold */
 | 
						|
/* >              sqrt(n) * slamch('Epsilon') to determine if the error */
 | 
						|
/* >              estimate is "guaranteed". These reciprocal condition */
 | 
						|
/* >              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 | 
						|
/* >              appropriately scaled matrix Z. */
 | 
						|
/* >              Let Z = S*(A*diag(x)), where x is the solution for the */
 | 
						|
/* >              current right-hand side and S scales each row of */
 | 
						|
/* >              A*diag(x) by a power of the radix so all absolute row */
 | 
						|
/* >              sums of Z are approximately 1. */
 | 
						|
/* > */
 | 
						|
/* >     See Lapack Working Note 165 for further details and extra */
 | 
						|
/* >     cautions. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NPARAMS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NPARAMS is INTEGER */
 | 
						|
/* >     Specifies the number of parameters set in PARAMS.  If <= 0, the */
 | 
						|
/* >     PARAMS array is never referenced and default values are used. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] PARAMS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          PARAMS is REAL array, dimension NPARAMS */
 | 
						|
/* >     Specifies algorithm parameters.  If an entry is < 0.0, then */
 | 
						|
/* >     that entry will be filled with default value used for that */
 | 
						|
/* >     parameter.  Only positions up to NPARAMS are accessed; defaults */
 | 
						|
/* >     are used for higher-numbered parameters. */
 | 
						|
/* > */
 | 
						|
/* >       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
 | 
						|
/* >            refinement or not. */
 | 
						|
/* >         Default: 1.0 */
 | 
						|
/* >            = 0.0:  No refinement is performed, and no error bounds are */
 | 
						|
/* >                    computed. */
 | 
						|
/* >            = 1.0:  Use the double-precision refinement algorithm, */
 | 
						|
/* >                    possibly with doubled-single computations if the */
 | 
						|
/* >                    compilation environment does not support DOUBLE */
 | 
						|
/* >                    PRECISION. */
 | 
						|
/* >              (other values are reserved for future use) */
 | 
						|
/* > */
 | 
						|
/* >       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
 | 
						|
/* >            computations allowed for refinement. */
 | 
						|
/* >         Default: 10 */
 | 
						|
/* >         Aggressive: Set to 100 to permit convergence using approximate */
 | 
						|
/* >                     factorizations or factorizations other than LU. If */
 | 
						|
/* >                     the factorization uses a technique other than */
 | 
						|
/* >                     Gaussian elimination, the guarantees in */
 | 
						|
/* >                     err_bnds_norm and err_bnds_comp may no longer be */
 | 
						|
/* >                     trustworthy. */
 | 
						|
/* > */
 | 
						|
/* >       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
 | 
						|
/* >            will attempt to find a solution with small componentwise */
 | 
						|
/* >            relative error in the double-precision algorithm.  Positive */
 | 
						|
/* >            is true, 0.0 is false. */
 | 
						|
/* >         Default: 1.0 (attempt componentwise convergence) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is REAL array, dimension (4*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array, dimension (N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >       = 0:  Successful exit. The solution to every right-hand side is */
 | 
						|
/* >         guaranteed. */
 | 
						|
/* >       < 0:  If INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization */
 | 
						|
/* >         has been completed, but the factor U is exactly singular, so */
 | 
						|
/* >         the solution and error bounds could not be computed. RCOND = 0 */
 | 
						|
/* >         is returned. */
 | 
						|
/* >       = N+J: The solution corresponding to the Jth right-hand side is */
 | 
						|
/* >         not guaranteed. The solutions corresponding to other right- */
 | 
						|
/* >         hand sides K with K > J may not be guaranteed as well, but */
 | 
						|
/* >         only the first such right-hand side is reported. If a small */
 | 
						|
/* >         componentwise error is not requested (PARAMS(3) = 0.0) then */
 | 
						|
/* >         the Jth right-hand side is the first with a normwise error */
 | 
						|
/* >         bound that is not guaranteed (the smallest J such */
 | 
						|
/* >         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
 | 
						|
/* >         the Jth right-hand side is the first with either a normwise or */
 | 
						|
/* >         componentwise error bound that is not guaranteed (the smallest */
 | 
						|
/* >         J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
 | 
						|
/* >         ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
 | 
						|
/* >         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
 | 
						|
/* >         about all of the right-hand sides check ERR_BNDS_NORM or */
 | 
						|
/* >         ERR_BNDS_COMP. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date April 2012 */
 | 
						|
 | 
						|
/* > \ingroup realGBcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void sgbrfsx_(char *trans, char *equed, integer *n, integer *
 | 
						|
	kl, integer *ku, integer *nrhs, real *ab, integer *ldab, real *afb, 
 | 
						|
	integer *ldafb, integer *ipiv, real *r__, real *c__, real *b, integer 
 | 
						|
	*ldb, real *x, integer *ldx, real *rcond, real *berr, integer *
 | 
						|
	n_err_bnds__, real *err_bnds_norm__, real *err_bnds_comp__, integer *
 | 
						|
	nparams, real *params, real *work, integer *iwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset, 
 | 
						|
	    x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
 | 
						|
	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
 | 
						|
    real r__1, r__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real illrcond_thresh__;
 | 
						|
    extern /* Subroutine */ void sla_gbrfsx_extended_(integer *, integer *, 
 | 
						|
	    integer *, integer *, integer *, integer *, real *, integer *, 
 | 
						|
	    real *, integer *, integer *, logical *, real *, real *, integer *
 | 
						|
	    , real *, integer *, real *, integer *, real *, real *, real *, 
 | 
						|
	    real *, real *, real *, real *, integer *, real *, real *, 
 | 
						|
	    logical *, integer *);
 | 
						|
    real unstable_thresh__, err_lbnd__;
 | 
						|
    char norm[1];
 | 
						|
    integer ref_type__;
 | 
						|
    extern integer ilatrans_(char *);
 | 
						|
    logical ignore_cwise__;
 | 
						|
    integer j;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    real anorm, rcond_tmp__;
 | 
						|
    integer prec_type__;
 | 
						|
    extern real slangb_(char *, integer *, integer *, integer *, real *, 
 | 
						|
	    integer *, real *), slamch_(char *);
 | 
						|
    extern /* Subroutine */ void sgbcon_(char *, integer *, integer *, integer 
 | 
						|
	    *, real *, integer *, integer *, real *, real *, real *, integer *
 | 
						|
	    , integer *);
 | 
						|
    extern int xerbla_(char *, integer *, ftnlen);
 | 
						|
    logical colequ, notran, rowequ;
 | 
						|
    integer trans_type__;
 | 
						|
    extern integer ilaprec_(char *);
 | 
						|
    extern real sla_gbrcond_(char *, integer *, integer *, integer *, real *,
 | 
						|
	     integer *, real *, integer *, integer *, integer *, real *, 
 | 
						|
	    integer *, real *, integer *);
 | 
						|
    integer ithresh, n_norms__;
 | 
						|
    real rthresh, cwise_wrong__;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     April 2012 */
 | 
						|
 | 
						|
 | 
						|
/*  ================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Check the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    err_bnds_comp_dim1 = *nrhs;
 | 
						|
    err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
 | 
						|
    err_bnds_comp__ -= err_bnds_comp_offset;
 | 
						|
    err_bnds_norm_dim1 = *nrhs;
 | 
						|
    err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
 | 
						|
    err_bnds_norm__ -= err_bnds_norm_offset;
 | 
						|
    ab_dim1 = *ldab;
 | 
						|
    ab_offset = 1 + ab_dim1 * 1;
 | 
						|
    ab -= ab_offset;
 | 
						|
    afb_dim1 = *ldafb;
 | 
						|
    afb_offset = 1 + afb_dim1 * 1;
 | 
						|
    afb -= afb_offset;
 | 
						|
    --ipiv;
 | 
						|
    --r__;
 | 
						|
    --c__;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    x_dim1 = *ldx;
 | 
						|
    x_offset = 1 + x_dim1 * 1;
 | 
						|
    x -= x_offset;
 | 
						|
    --berr;
 | 
						|
    --params;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    trans_type__ = ilatrans_(trans);
 | 
						|
    ref_type__ = 1;
 | 
						|
    if (*nparams >= 1) {
 | 
						|
	if (params[1] < 0.f) {
 | 
						|
	    params[1] = 1.f;
 | 
						|
	} else {
 | 
						|
	    ref_type__ = params[1];
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Set default parameters. */
 | 
						|
 | 
						|
    illrcond_thresh__ = (real) (*n) * slamch_("Epsilon");
 | 
						|
    ithresh = 10;
 | 
						|
    rthresh = .5f;
 | 
						|
    unstable_thresh__ = .25f;
 | 
						|
    ignore_cwise__ = FALSE_;
 | 
						|
 | 
						|
    if (*nparams >= 2) {
 | 
						|
	if (params[2] < 0.f) {
 | 
						|
	    params[2] = (real) ithresh;
 | 
						|
	} else {
 | 
						|
	    ithresh = (integer) params[2];
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (*nparams >= 3) {
 | 
						|
	if (params[3] < 0.f) {
 | 
						|
	    if (ignore_cwise__) {
 | 
						|
		params[3] = 0.f;
 | 
						|
	    } else {
 | 
						|
		params[3] = 1.f;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    ignore_cwise__ = params[3] == 0.f;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (ref_type__ == 0 || *n_err_bnds__ == 0) {
 | 
						|
	n_norms__ = 0;
 | 
						|
    } else if (ignore_cwise__) {
 | 
						|
	n_norms__ = 1;
 | 
						|
    } else {
 | 
						|
	n_norms__ = 2;
 | 
						|
    }
 | 
						|
 | 
						|
    notran = lsame_(trans, "N");
 | 
						|
    rowequ = lsame_(equed, "R") || lsame_(equed, "B");
 | 
						|
    colequ = lsame_(equed, "C") || lsame_(equed, "B");
 | 
						|
 | 
						|
/*     Test input parameters. */
 | 
						|
 | 
						|
    if (trans_type__ == -1) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*kl < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*ku < 0) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*nrhs < 0) {
 | 
						|
	*info = -6;
 | 
						|
    } else if (*ldab < *kl + *ku + 1) {
 | 
						|
	*info = -8;
 | 
						|
    } else if (*ldafb < (*kl << 1) + *ku + 1) {
 | 
						|
	*info = -10;
 | 
						|
    } else if (*ldb < f2cmax(1,*n)) {
 | 
						|
	*info = -13;
 | 
						|
    } else if (*ldx < f2cmax(1,*n)) {
 | 
						|
	*info = -15;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SGBRFSX", &i__1, (ftnlen)7);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible. */
 | 
						|
 | 
						|
    if (*n == 0 || *nrhs == 0) {
 | 
						|
	*rcond = 1.f;
 | 
						|
	i__1 = *nrhs;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    berr[j] = 0.f;
 | 
						|
	    if (*n_err_bnds__ >= 1) {
 | 
						|
		err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
 | 
						|
		err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
 | 
						|
	    }
 | 
						|
	    if (*n_err_bnds__ >= 2) {
 | 
						|
		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.f;
 | 
						|
		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.f;
 | 
						|
	    }
 | 
						|
	    if (*n_err_bnds__ >= 3) {
 | 
						|
		err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.f;
 | 
						|
		err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.f;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Default to failure. */
 | 
						|
 | 
						|
    *rcond = 0.f;
 | 
						|
    i__1 = *nrhs;
 | 
						|
    for (j = 1; j <= i__1; ++j) {
 | 
						|
	berr[j] = 1.f;
 | 
						|
	if (*n_err_bnds__ >= 1) {
 | 
						|
	    err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
 | 
						|
	    err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
 | 
						|
	}
 | 
						|
	if (*n_err_bnds__ >= 2) {
 | 
						|
	    err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
 | 
						|
	    err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
 | 
						|
	}
 | 
						|
	if (*n_err_bnds__ >= 3) {
 | 
						|
	    err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.f;
 | 
						|
	    err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.f;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute the norm of A and the reciprocal of the condition */
 | 
						|
/*     number of A. */
 | 
						|
 | 
						|
    if (notran) {
 | 
						|
	*(unsigned char *)norm = 'I';
 | 
						|
    } else {
 | 
						|
	*(unsigned char *)norm = '1';
 | 
						|
    }
 | 
						|
    anorm = slangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &work[1]);
 | 
						|
    sgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond,
 | 
						|
	     &work[1], &iwork[1], info);
 | 
						|
 | 
						|
/*     Perform refinement on each right-hand side */
 | 
						|
 | 
						|
    if (ref_type__ != 0 && *info == 0) {
 | 
						|
	prec_type__ = ilaprec_("D");
 | 
						|
	if (notran) {
 | 
						|
	    sla_gbrfsx_extended_(&prec_type__, &trans_type__, n, kl, ku, 
 | 
						|
		    nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &
 | 
						|
		    ipiv[1], &colequ, &c__[1], &b[b_offset], ldb, &x[x_offset]
 | 
						|
		    , ldx, &berr[1], &n_norms__, &err_bnds_norm__[
 | 
						|
		    err_bnds_norm_offset], &err_bnds_comp__[
 | 
						|
		    err_bnds_comp_offset], &work[*n + 1], &work[1], &work[(*n 
 | 
						|
		    << 1) + 1], &work[1], rcond, &ithresh, &rthresh, &
 | 
						|
		    unstable_thresh__, &ignore_cwise__, info);
 | 
						|
	} else {
 | 
						|
	    sla_gbrfsx_extended_(&prec_type__, &trans_type__, n, kl, ku, 
 | 
						|
		    nrhs, &ab[ab_offset], ldab, &afb[afb_offset], ldafb, &
 | 
						|
		    ipiv[1], &rowequ, &r__[1], &b[b_offset], ldb, &x[x_offset]
 | 
						|
		    , ldx, &berr[1], &n_norms__, &err_bnds_norm__[
 | 
						|
		    err_bnds_norm_offset], &err_bnds_comp__[
 | 
						|
		    err_bnds_comp_offset], &work[*n + 1], &work[1], &work[(*n 
 | 
						|
		    << 1) + 1], &work[1], rcond, &ithresh, &rthresh, &
 | 
						|
		    unstable_thresh__, &ignore_cwise__, info);
 | 
						|
	}
 | 
						|
    }
 | 
						|
/* Computing MAX */
 | 
						|
    r__1 = 10.f, r__2 = sqrt((real) (*n));
 | 
						|
    err_lbnd__ = f2cmax(r__1,r__2) * slamch_("Epsilon");
 | 
						|
    if (*n_err_bnds__ >= 1 && n_norms__ >= 1) {
 | 
						|
 | 
						|
/*     Compute scaled normwise condition number cond(A*C). */
 | 
						|
 | 
						|
	if (colequ && notran) {
 | 
						|
	    rcond_tmp__ = sla_gbrcond_(trans, n, kl, ku, &ab[ab_offset], 
 | 
						|
		    ldab, &afb[afb_offset], ldafb, &ipiv[1], &c_n1, &c__[1], 
 | 
						|
		    info, &work[1], &iwork[1]);
 | 
						|
	} else if (rowequ && ! notran) {
 | 
						|
	    rcond_tmp__ = sla_gbrcond_(trans, n, kl, ku, &ab[ab_offset], 
 | 
						|
		    ldab, &afb[afb_offset], ldafb, &ipiv[1], &c_n1, &r__[1], 
 | 
						|
		    info, &work[1], &iwork[1]);
 | 
						|
	} else {
 | 
						|
	    rcond_tmp__ = sla_gbrcond_(trans, n, kl, ku, &ab[ab_offset], 
 | 
						|
		    ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__0, &r__[1], 
 | 
						|
		    info, &work[1], &iwork[1]);
 | 
						|
	}
 | 
						|
	i__1 = *nrhs;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
 | 
						|
/*     Cap the error at 1.0. */
 | 
						|
 | 
						|
	    if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1 
 | 
						|
		    << 1)] > 1.f) {
 | 
						|
		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
 | 
						|
	    }
 | 
						|
 | 
						|
/*     Threshold the error (see LAWN). */
 | 
						|
 | 
						|
	    if (rcond_tmp__ < illrcond_thresh__) {
 | 
						|
		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
 | 
						|
		err_bnds_norm__[j + err_bnds_norm_dim1] = 0.f;
 | 
						|
		if (*info <= *n) {
 | 
						|
		    *info = *n + j;
 | 
						|
		}
 | 
						|
	    } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] < 
 | 
						|
		    err_lbnd__) {
 | 
						|
		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__;
 | 
						|
		err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
 | 
						|
	    }
 | 
						|
 | 
						|
/*     Save the condition number. */
 | 
						|
 | 
						|
	    if (*n_err_bnds__ >= 3) {
 | 
						|
		err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
    if (*n_err_bnds__ >= 1 && n_norms__ >= 2) {
 | 
						|
 | 
						|
/*     Compute componentwise condition number cond(A*diag(Y(:,J))) for */
 | 
						|
/*     each right-hand side using the current solution as an estimate of */
 | 
						|
/*     the true solution.  If the componentwise error estimate is too */
 | 
						|
/*     large, then the solution is a lousy estimate of truth and the */
 | 
						|
/*     estimated RCOND may be too optimistic.  To avoid misleading users, */
 | 
						|
/*     the inverse condition number is set to 0.0 when the estimated */
 | 
						|
/*     cwise error is at least CWISE_WRONG. */
 | 
						|
 | 
						|
	cwise_wrong__ = sqrt(slamch_("Epsilon"));
 | 
						|
	i__1 = *nrhs;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 
 | 
						|
		    cwise_wrong__) {
 | 
						|
		rcond_tmp__ = sla_gbrcond_(trans, n, kl, ku, &ab[ab_offset], 
 | 
						|
			ldab, &afb[afb_offset], ldafb, &ipiv[1], &c__1, &x[j *
 | 
						|
			 x_dim1 + 1], info, &work[1], &iwork[1]);
 | 
						|
	    } else {
 | 
						|
		rcond_tmp__ = 0.f;
 | 
						|
	    }
 | 
						|
 | 
						|
/*     Cap the error at 1.0. */
 | 
						|
 | 
						|
	    if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1 
 | 
						|
		    << 1)] > 1.f) {
 | 
						|
		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
 | 
						|
	    }
 | 
						|
 | 
						|
/*     Threshold the error (see LAWN). */
 | 
						|
 | 
						|
	    if (rcond_tmp__ < illrcond_thresh__) {
 | 
						|
		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
 | 
						|
		err_bnds_comp__[j + err_bnds_comp_dim1] = 0.f;
 | 
						|
		if (params[3] == 1.f && *info < *n + j) {
 | 
						|
		    *info = *n + j;
 | 
						|
		}
 | 
						|
	    } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 
 | 
						|
		    err_lbnd__) {
 | 
						|
		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__;
 | 
						|
		err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
 | 
						|
	    }
 | 
						|
 | 
						|
/*     Save the condition number. */
 | 
						|
 | 
						|
	    if (*n_err_bnds__ >= 3) {
 | 
						|
		err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of SGBRFSX */
 | 
						|
 | 
						|
} /* sgbrfsx_ */
 | 
						|
 |