1044 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1044 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static doublereal c_b18 = -1.;
 | 
						|
static doublereal c_b19 = 1.;
 | 
						|
 | 
						|
/* > \brief \b DGTRFS */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download DGTRFS + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgtrfs.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgtrfs.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgtrfs.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE DGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, */
 | 
						|
/*                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, */
 | 
						|
/*                          INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          TRANS */
 | 
						|
/*       INTEGER            INFO, LDB, LDX, N, NRHS */
 | 
						|
/*       INTEGER            IPIV( * ), IWORK( * ) */
 | 
						|
/*       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ), */
 | 
						|
/*      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ), */
 | 
						|
/*      $                   FERR( * ), WORK( * ), X( LDX, * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > DGTRFS improves the computed solution to a system of linear */
 | 
						|
/* > equations when the coefficient matrix is tridiagonal, and provides */
 | 
						|
/* > error bounds and backward error estimates for the solution. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] TRANS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TRANS is CHARACTER*1 */
 | 
						|
/* >          Specifies the form of the system of equations: */
 | 
						|
/* >          = 'N':  A * X = B     (No transpose) */
 | 
						|
/* >          = 'T':  A**T * X = B  (Transpose) */
 | 
						|
/* >          = 'C':  A**H * X = B  (Conjugate transpose = Transpose) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NRHS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NRHS is INTEGER */
 | 
						|
/* >          The number of right hand sides, i.e., the number of columns */
 | 
						|
/* >          of the matrix B.  NRHS >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DL is DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/* >          The (n-1) subdiagonal elements of A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] D */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          The diagonal elements of A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DU */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DU is DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/* >          The (n-1) superdiagonal elements of A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DLF */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DLF is DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/* >          The (n-1) multipliers that define the matrix L from the */
 | 
						|
/* >          LU factorization of A as computed by DGTTRF. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DF */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DF is DOUBLE PRECISION array, dimension (N) */
 | 
						|
/* >          The n diagonal elements of the upper triangular matrix U from */
 | 
						|
/* >          the LU factorization of A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DUF */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DUF is DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/* >          The (n-1) elements of the first superdiagonal of U. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DU2 */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DU2 is DOUBLE PRECISION array, dimension (N-2) */
 | 
						|
/* >          The (n-2) elements of the second superdiagonal of U. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] IPIV */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IPIV is INTEGER array, dimension (N) */
 | 
						|
/* >          The pivot indices; for 1 <= i <= n, row i of the matrix was */
 | 
						|
/* >          interchanged with row IPIV(i).  IPIV(i) will always be either */
 | 
						|
/* >          i or i+1; IPIV(i) = i indicates a row interchange was not */
 | 
						|
/* >          required. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
 | 
						|
/* >          The right hand side matrix B. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] X */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
 | 
						|
/* >          On entry, the solution matrix X, as computed by DGTTRS. */
 | 
						|
/* >          On exit, the improved solution matrix X. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDX */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDX is INTEGER */
 | 
						|
/* >          The leading dimension of the array X.  LDX >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] FERR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          FERR is DOUBLE PRECISION array, dimension (NRHS) */
 | 
						|
/* >          The estimated forward error bound for each solution vector */
 | 
						|
/* >          X(j) (the j-th column of the solution matrix X). */
 | 
						|
/* >          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 | 
						|
/* >          is an estimated upper bound for the magnitude of the largest */
 | 
						|
/* >          element in (X(j) - XTRUE) divided by the magnitude of the */
 | 
						|
/* >          largest element in X(j).  The estimate is as reliable as */
 | 
						|
/* >          the estimate for RCOND, and is almost always a slight */
 | 
						|
/* >          overestimate of the true error. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] BERR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BERR is DOUBLE PRECISION array, dimension (NRHS) */
 | 
						|
/* >          The componentwise relative backward error of each solution */
 | 
						|
/* >          vector X(j) (i.e., the smallest relative change in */
 | 
						|
/* >          any element of A or B that makes X(j) an exact solution). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is DOUBLE PRECISION array, dimension (3*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] IWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          IWORK is INTEGER array, dimension (N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/* > \par Internal Parameters: */
 | 
						|
/*  ========================= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* >  ITMAX is the maximum number of steps of iterative refinement. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup doubleGTcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void dgtrfs_(char *trans, integer *n, integer *nrhs, 
 | 
						|
	doublereal *dl, doublereal *d__, doublereal *du, doublereal *dlf, 
 | 
						|
	doublereal *df, doublereal *duf, doublereal *du2, integer *ipiv, 
 | 
						|
	doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
 | 
						|
	ferr, doublereal *berr, doublereal *work, integer *iwork, integer *
 | 
						|
	info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
 | 
						|
    doublereal d__1, d__2, d__3, d__4;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer kase;
 | 
						|
    doublereal safe1, safe2;
 | 
						|
    integer i__, j;
 | 
						|
    doublereal s;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer isave[3];
 | 
						|
    extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *), daxpy_(integer *, doublereal *, 
 | 
						|
	    doublereal *, integer *, doublereal *, integer *);
 | 
						|
    integer count;
 | 
						|
    extern /* Subroutine */ void dlacn2_(integer *, doublereal *, doublereal *,
 | 
						|
	     integer *, doublereal *, integer *, integer *);
 | 
						|
    extern doublereal dlamch_(char *);
 | 
						|
    integer nz;
 | 
						|
    extern /* Subroutine */ void dlagtm_(char *, integer *, integer *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | 
						|
	    doublereal *, integer *, doublereal *, doublereal *, integer *);
 | 
						|
    doublereal safmin;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    logical notran;
 | 
						|
    char transn[1];
 | 
						|
    extern /* Subroutine */ void dgttrs_(char *, integer *, integer *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
 | 
						|
	     doublereal *, integer *, integer *);
 | 
						|
    char transt[1];
 | 
						|
    doublereal lstres, eps;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --dl;
 | 
						|
    --d__;
 | 
						|
    --du;
 | 
						|
    --dlf;
 | 
						|
    --df;
 | 
						|
    --duf;
 | 
						|
    --du2;
 | 
						|
    --ipiv;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    x_dim1 = *ldx;
 | 
						|
    x_offset = 1 + x_dim1 * 1;
 | 
						|
    x -= x_offset;
 | 
						|
    --ferr;
 | 
						|
    --berr;
 | 
						|
    --work;
 | 
						|
    --iwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    notran = lsame_(trans, "N");
 | 
						|
    if (! notran && ! lsame_(trans, "T") && ! lsame_(
 | 
						|
	    trans, "C")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*nrhs < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*ldb < f2cmax(1,*n)) {
 | 
						|
	*info = -13;
 | 
						|
    } else if (*ldx < f2cmax(1,*n)) {
 | 
						|
	*info = -15;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DGTRFS", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0 || *nrhs == 0) {
 | 
						|
	i__1 = *nrhs;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    ferr[j] = 0.;
 | 
						|
	    berr[j] = 0.;
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (notran) {
 | 
						|
	*(unsigned char *)transn = 'N';
 | 
						|
	*(unsigned char *)transt = 'T';
 | 
						|
    } else {
 | 
						|
	*(unsigned char *)transn = 'T';
 | 
						|
	*(unsigned char *)transt = 'N';
 | 
						|
    }
 | 
						|
 | 
						|
/*     NZ = maximum number of nonzero elements in each row of A, plus 1 */
 | 
						|
 | 
						|
    nz = 4;
 | 
						|
    eps = dlamch_("Epsilon");
 | 
						|
    safmin = dlamch_("Safe minimum");
 | 
						|
    safe1 = nz * safmin;
 | 
						|
    safe2 = safe1 / eps;
 | 
						|
 | 
						|
/*     Do for each right hand side */
 | 
						|
 | 
						|
    i__1 = *nrhs;
 | 
						|
    for (j = 1; j <= i__1; ++j) {
 | 
						|
 | 
						|
	count = 1;
 | 
						|
	lstres = 3.;
 | 
						|
L20:
 | 
						|
 | 
						|
/*        Loop until stopping criterion is satisfied. */
 | 
						|
 | 
						|
/*        Compute residual R = B - op(A) * X, */
 | 
						|
/*        where op(A) = A, A**T, or A**H, depending on TRANS. */
 | 
						|
 | 
						|
	dcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
 | 
						|
	dlagtm_(trans, n, &c__1, &c_b18, &dl[1], &d__[1], &du[1], &x[j * 
 | 
						|
		x_dim1 + 1], ldx, &c_b19, &work[*n + 1], n);
 | 
						|
 | 
						|
/*        Compute abs(op(A))*abs(x) + abs(b) for use in the backward */
 | 
						|
/*        error bound. */
 | 
						|
 | 
						|
	if (notran) {
 | 
						|
	    if (*n == 1) {
 | 
						|
		work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[
 | 
						|
			1] * x[j * x_dim1 + 1], abs(d__2));
 | 
						|
	    } else {
 | 
						|
		work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[
 | 
						|
			1] * x[j * x_dim1 + 1], abs(d__2)) + (d__3 = du[1] * 
 | 
						|
			x[j * x_dim1 + 2], abs(d__3));
 | 
						|
		i__2 = *n - 1;
 | 
						|
		for (i__ = 2; i__ <= i__2; ++i__) {
 | 
						|
		    work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1)) + (
 | 
						|
			    d__2 = dl[i__ - 1] * x[i__ - 1 + j * x_dim1], abs(
 | 
						|
			    d__2)) + (d__3 = d__[i__] * x[i__ + j * x_dim1], 
 | 
						|
			    abs(d__3)) + (d__4 = du[i__] * x[i__ + 1 + j * 
 | 
						|
			    x_dim1], abs(d__4));
 | 
						|
/* L30: */
 | 
						|
		}
 | 
						|
		work[*n] = (d__1 = b[*n + j * b_dim1], abs(d__1)) + (d__2 = 
 | 
						|
			dl[*n - 1] * x[*n - 1 + j * x_dim1], abs(d__2)) + (
 | 
						|
			d__3 = d__[*n] * x[*n + j * x_dim1], abs(d__3));
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    if (*n == 1) {
 | 
						|
		work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[
 | 
						|
			1] * x[j * x_dim1 + 1], abs(d__2));
 | 
						|
	    } else {
 | 
						|
		work[1] = (d__1 = b[j * b_dim1 + 1], abs(d__1)) + (d__2 = d__[
 | 
						|
			1] * x[j * x_dim1 + 1], abs(d__2)) + (d__3 = dl[1] * 
 | 
						|
			x[j * x_dim1 + 2], abs(d__3));
 | 
						|
		i__2 = *n - 1;
 | 
						|
		for (i__ = 2; i__ <= i__2; ++i__) {
 | 
						|
		    work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1)) + (
 | 
						|
			    d__2 = du[i__ - 1] * x[i__ - 1 + j * x_dim1], abs(
 | 
						|
			    d__2)) + (d__3 = d__[i__] * x[i__ + j * x_dim1], 
 | 
						|
			    abs(d__3)) + (d__4 = dl[i__] * x[i__ + 1 + j * 
 | 
						|
			    x_dim1], abs(d__4));
 | 
						|
/* L40: */
 | 
						|
		}
 | 
						|
		work[*n] = (d__1 = b[*n + j * b_dim1], abs(d__1)) + (d__2 = 
 | 
						|
			du[*n - 1] * x[*n - 1 + j * x_dim1], abs(d__2)) + (
 | 
						|
			d__3 = d__[*n] * x[*n + j * x_dim1], abs(d__3));
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Compute componentwise relative backward error from formula */
 | 
						|
 | 
						|
/*        f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
 | 
						|
 | 
						|
/*        where abs(Z) is the componentwise absolute value of the matrix */
 | 
						|
/*        or vector Z.  If the i-th component of the denominator is less */
 | 
						|
/*        than SAFE2, then SAFE1 is added to the i-th components of the */
 | 
						|
/*        numerator and denominator before dividing. */
 | 
						|
 | 
						|
	s = 0.;
 | 
						|
	i__2 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
	    if (work[i__] > safe2) {
 | 
						|
/* Computing MAX */
 | 
						|
		d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
 | 
						|
			i__];
 | 
						|
		s = f2cmax(d__2,d__3);
 | 
						|
	    } else {
 | 
						|
/* Computing MAX */
 | 
						|
		d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) 
 | 
						|
			/ (work[i__] + safe1);
 | 
						|
		s = f2cmax(d__2,d__3);
 | 
						|
	    }
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
	berr[j] = s;
 | 
						|
 | 
						|
/*        Test stopping criterion. Continue iterating if */
 | 
						|
/*           1) The residual BERR(J) is larger than machine epsilon, and */
 | 
						|
/*           2) BERR(J) decreased by at least a factor of 2 during the */
 | 
						|
/*              last iteration, and */
 | 
						|
/*           3) At most ITMAX iterations tried. */
 | 
						|
 | 
						|
	if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
 | 
						|
 | 
						|
/*           Update solution and try again. */
 | 
						|
 | 
						|
	    dgttrs_(trans, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[
 | 
						|
		    1], &work[*n + 1], n, info);
 | 
						|
	    daxpy_(n, &c_b19, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1)
 | 
						|
		    ;
 | 
						|
	    lstres = berr[j];
 | 
						|
	    ++count;
 | 
						|
	    goto L20;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Bound error from formula */
 | 
						|
 | 
						|
/*        norm(X - XTRUE) / norm(X) .le. FERR = */
 | 
						|
/*        norm( abs(inv(op(A)))* */
 | 
						|
/*           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
 | 
						|
 | 
						|
/*        where */
 | 
						|
/*          norm(Z) is the magnitude of the largest component of Z */
 | 
						|
/*          inv(op(A)) is the inverse of op(A) */
 | 
						|
/*          abs(Z) is the componentwise absolute value of the matrix or */
 | 
						|
/*             vector Z */
 | 
						|
/*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
 | 
						|
/*          EPS is machine epsilon */
 | 
						|
 | 
						|
/*        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
 | 
						|
/*        is incremented by SAFE1 if the i-th component of */
 | 
						|
/*        abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
 | 
						|
 | 
						|
/*        Use DLACN2 to estimate the infinity-norm of the matrix */
 | 
						|
/*           inv(op(A)) * diag(W), */
 | 
						|
/*        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
 | 
						|
 | 
						|
	i__2 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
	    if (work[i__] > safe2) {
 | 
						|
		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 | 
						|
			work[i__];
 | 
						|
	    } else {
 | 
						|
		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 | 
						|
			work[i__] + safe1;
 | 
						|
	    }
 | 
						|
/* L60: */
 | 
						|
	}
 | 
						|
 | 
						|
	kase = 0;
 | 
						|
L70:
 | 
						|
	dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
 | 
						|
		kase, isave);
 | 
						|
	if (kase != 0) {
 | 
						|
	    if (kase == 1) {
 | 
						|
 | 
						|
/*              Multiply by diag(W)*inv(op(A)**T). */
 | 
						|
 | 
						|
		dgttrs_(transt, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &
 | 
						|
			ipiv[1], &work[*n + 1], n, info);
 | 
						|
		i__2 = *n;
 | 
						|
		for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		    work[*n + i__] = work[i__] * work[*n + i__];
 | 
						|
/* L80: */
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              Multiply by inv(op(A))*diag(W). */
 | 
						|
 | 
						|
		i__2 = *n;
 | 
						|
		for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
		    work[*n + i__] = work[i__] * work[*n + i__];
 | 
						|
/* L90: */
 | 
						|
		}
 | 
						|
		dgttrs_(transn, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &
 | 
						|
			ipiv[1], &work[*n + 1], n, info);
 | 
						|
	    }
 | 
						|
	    goto L70;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Normalize error. */
 | 
						|
 | 
						|
	lstres = 0.;
 | 
						|
	i__2 = *n;
 | 
						|
	for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
/* Computing MAX */
 | 
						|
	    d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
 | 
						|
	    lstres = f2cmax(d__2,d__3);
 | 
						|
/* L100: */
 | 
						|
	}
 | 
						|
	if (lstres != 0.) {
 | 
						|
	    ferr[j] /= lstres;
 | 
						|
	}
 | 
						|
 | 
						|
/* L110: */
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of DGTRFS */
 | 
						|
 | 
						|
} /* dgtrfs_ */
 | 
						|
 |