493 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			493 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGETSLS
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
 | 
						|
*     $                     WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANS
 | 
						|
*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGETSLS solves overdetermined or underdetermined real linear systems
 | 
						|
*> involving an M-by-N matrix A, using a tall skinny QR or short wide LQ
 | 
						|
*> factorization of A.  It is assumed that A has full rank.
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>
 | 
						|
*> The following options are provided:
 | 
						|
*>
 | 
						|
*> 1. If TRANS = 'N' and m >= n:  find the least squares solution of
 | 
						|
*>    an overdetermined system, i.e., solve the least squares problem
 | 
						|
*>                 minimize || B - A*X ||.
 | 
						|
*>
 | 
						|
*> 2. If TRANS = 'N' and m < n:  find the minimum norm solution of
 | 
						|
*>    an underdetermined system A * X = B.
 | 
						|
*>
 | 
						|
*> 3. If TRANS = 'T' and m >= n:  find the minimum norm solution of
 | 
						|
*>    an undetermined system A**T * X = B.
 | 
						|
*>
 | 
						|
*> 4. If TRANS = 'T' and m < n:  find the least squares solution of
 | 
						|
*>    an overdetermined system, i.e., solve the least squares problem
 | 
						|
*>                 minimize || B - A**T * X ||.
 | 
						|
*>
 | 
						|
*> Several right hand side vectors b and solution vectors x can be
 | 
						|
*> handled in a single call; they are stored as the columns of the
 | 
						|
*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
 | 
						|
*> matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          = 'N': the linear system involves A;
 | 
						|
*>          = 'T': the linear system involves A**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of
 | 
						|
*>          columns of the matrices B and X. NRHS >=0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit,
 | 
						|
*>          A is overwritten by details of its QR or LQ
 | 
						|
*>          factorization as returned by DGEQR or DGELQ.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the matrix B of right hand side vectors, stored
 | 
						|
*>          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
 | 
						|
*>          if TRANS = 'T'.
 | 
						|
*>          On exit, if INFO = 0, B is overwritten by the solution
 | 
						|
*>          vectors, stored columnwise:
 | 
						|
*>          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
 | 
						|
*>          squares solution vectors.
 | 
						|
*>          if TRANS = 'N' and m < n, rows 1 to N of B contain the
 | 
						|
*>          minimum norm solution vectors;
 | 
						|
*>          if TRANS = 'T' and m >= n, rows 1 to M of B contain the
 | 
						|
*>          minimum norm solution vectors;
 | 
						|
*>          if TRANS = 'T' and m < n, rows 1 to M of B contain the
 | 
						|
*>          least squares solution vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= MAX(1,M,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
 | 
						|
*>          or optimal, if query was assumed) LWORK.
 | 
						|
*>          See LWORK for details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= 1.
 | 
						|
*>          If LWORK = -1 or -2, then a workspace query is assumed.
 | 
						|
*>          If LWORK = -1, the routine calculates optimal size of WORK for the
 | 
						|
*>          optimal performance and returns this value in WORK(1).
 | 
						|
*>          If LWORK = -2, the routine calculates minimal size of WORK and 
 | 
						|
*>          returns this value in WORK(1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO =  i, the i-th diagonal element of the
 | 
						|
*>                triangular factor of A is zero, so that A does not have
 | 
						|
*>                full rank; the least squares solution could not be
 | 
						|
*>                computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup getsls
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB,
 | 
						|
     $                    WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, TRAN
 | 
						|
      INTEGER            I, IASCL, IBSCL, J, MAXMN, BROW,
 | 
						|
     $                   SCLLEN, TSZO, TSZM, LWO, LWM, LW1, LW2,
 | 
						|
     $                   WSIZEO, WSIZEM, INFO2
 | 
						|
      DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM, TQ( 5 ), WORKQ( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE
 | 
						|
      EXTERNAL           LSAME, DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEQR, DGEMQR, DLASCL, DLASET,
 | 
						|
     $                   DTRTRS, XERBLA, DGELQ, DGEMLQ
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN, INT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      MAXMN = MAX( M, N )
 | 
						|
      TRAN  = LSAME( TRANS, 'T' )
 | 
						|
*
 | 
						|
      LQUERY = ( LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
 | 
						|
      IF( .NOT.( LSAME( TRANS, 'N' ) .OR.
 | 
						|
     $    LSAME( TRANS, 'T' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*     Determine the optimum and minimum LWORK
 | 
						|
*
 | 
						|
       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
 | 
						|
         WSIZEM = 1
 | 
						|
         WSIZEO = 1
 | 
						|
       ELSE IF( M.GE.N ) THEN
 | 
						|
         CALL DGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
 | 
						|
         TSZO = INT( TQ( 1 ) )
 | 
						|
         LWO  = INT( WORKQ( 1 ) )
 | 
						|
         CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
 | 
						|
     $                TSZO, B, LDB, WORKQ, -1, INFO2 )
 | 
						|
         LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
 | 
						|
         CALL DGEQR( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
 | 
						|
         TSZM = INT( TQ( 1 ) )
 | 
						|
         LWM  = INT( WORKQ( 1 ) )
 | 
						|
         CALL DGEMQR( 'L', TRANS, M, NRHS, N, A, LDA, TQ,
 | 
						|
     $                TSZM, B, LDB, WORKQ, -1, INFO2 )
 | 
						|
         LWM = MAX( LWM, INT( WORKQ( 1 ) ) )
 | 
						|
         WSIZEO = TSZO + LWO
 | 
						|
         WSIZEM = TSZM + LWM
 | 
						|
       ELSE
 | 
						|
         CALL DGELQ( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 )
 | 
						|
         TSZO = INT( TQ( 1 ) )
 | 
						|
         LWO  = INT( WORKQ( 1 ) )
 | 
						|
         CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
 | 
						|
     $                TSZO, B, LDB, WORKQ, -1, INFO2 )
 | 
						|
         LWO  = MAX( LWO, INT( WORKQ( 1 ) ) )
 | 
						|
         CALL DGELQ( M, N, A, LDA, TQ, -2, WORKQ, -2, INFO2 )
 | 
						|
         TSZM = INT( TQ( 1 ) )
 | 
						|
         LWM  = INT( WORKQ( 1 ) )
 | 
						|
         CALL DGEMLQ( 'L', TRANS, N, NRHS, M, A, LDA, TQ,
 | 
						|
     $                TSZM, B, LDB, WORKQ, -1, INFO2 )
 | 
						|
         LWM  = MAX( LWM, INT( WORKQ( 1 ) ) )
 | 
						|
         WSIZEO = TSZO + LWO
 | 
						|
         WSIZEM = TSZM + LWM
 | 
						|
       END IF
 | 
						|
*
 | 
						|
       IF( ( LWORK.LT.WSIZEM ).AND.( .NOT.LQUERY ) ) THEN
 | 
						|
          INFO = -10
 | 
						|
       END IF
 | 
						|
*
 | 
						|
       WORK( 1 ) = DBLE( WSIZEO )
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
        CALL XERBLA( 'DGETSLS', -INFO )
 | 
						|
        RETURN
 | 
						|
      END IF
 | 
						|
      IF( LQUERY ) THEN
 | 
						|
        IF( LWORK.EQ.-2 ) WORK( 1 ) = DBLE( WSIZEM )
 | 
						|
        RETURN
 | 
						|
      END IF
 | 
						|
      IF( LWORK.LT.WSIZEO ) THEN
 | 
						|
        LW1 = TSZM
 | 
						|
        LW2 = LWM
 | 
						|
      ELSE
 | 
						|
        LW1 = TSZO
 | 
						|
        LW2 = LWO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( MIN( M, N, NRHS ).EQ.0 ) THEN
 | 
						|
           CALL DLASET( 'FULL', MAX( M, N ), NRHS, ZERO, ZERO,
 | 
						|
     $                  B, LDB )
 | 
						|
           RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine parameters
 | 
						|
*
 | 
						|
       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
 | 
						|
       BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
*     Scale A, B if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
 | 
						|
      IASCL = 0
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 1
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
 | 
						|
         IASCL = 2
 | 
						|
      ELSE IF( ANRM.EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Matrix all zero. Return zero solution.
 | 
						|
*
 | 
						|
         CALL DLASET( 'F', MAXMN, NRHS, ZERO, ZERO, B, LDB )
 | 
						|
         GO TO 50
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      BROW = M
 | 
						|
      IF ( TRAN ) THEN
 | 
						|
        BROW = N
 | 
						|
      END IF
 | 
						|
      BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, WORK )
 | 
						|
      IBSCL = 0
 | 
						|
      IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm up to SMLNUM
 | 
						|
*
 | 
						|
         CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
 | 
						|
     $                INFO )
 | 
						|
         IBSCL = 1
 | 
						|
      ELSE IF( BNRM.GT.BIGNUM ) THEN
 | 
						|
*
 | 
						|
*        Scale matrix norm down to BIGNUM
 | 
						|
*
 | 
						|
         CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
 | 
						|
     $                INFO )
 | 
						|
         IBSCL = 2
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF ( M.GE.N ) THEN
 | 
						|
*
 | 
						|
*        compute QR factorization of A
 | 
						|
*
 | 
						|
        CALL DGEQR( M, N, A, LDA, WORK( LW2+1 ), LW1,
 | 
						|
     $              WORK( 1 ), LW2, INFO )
 | 
						|
        IF ( .NOT.TRAN ) THEN
 | 
						|
*
 | 
						|
*           Least-Squares Problem min || A * X - B ||
 | 
						|
*
 | 
						|
*           B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
 | 
						|
*
 | 
						|
          CALL DGEMQR( 'L' , 'T', M, NRHS, N, A, LDA,
 | 
						|
     $                 WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
 | 
						|
     $                 INFO )
 | 
						|
*
 | 
						|
*           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
 | 
						|
*
 | 
						|
          CALL DTRTRS( 'U', 'N', 'N', N, NRHS,
 | 
						|
     $                  A, LDA, B, LDB, INFO )
 | 
						|
          IF( INFO.GT.0 ) THEN
 | 
						|
            RETURN
 | 
						|
          END IF
 | 
						|
          SCLLEN = N
 | 
						|
        ELSE
 | 
						|
*
 | 
						|
*           Overdetermined system of equations A**T * X = B
 | 
						|
*
 | 
						|
*           B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS)
 | 
						|
*
 | 
						|
            CALL DTRTRS( 'U', 'T', 'N', N, NRHS,
 | 
						|
     $                   A, LDA, B, LDB, INFO )
 | 
						|
*
 | 
						|
            IF( INFO.GT.0 ) THEN
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           B(N+1:M,1:NRHS) = ZERO
 | 
						|
*
 | 
						|
            DO 20 J = 1, NRHS
 | 
						|
               DO 10 I = N + 1, M
 | 
						|
                  B( I, J ) = ZERO
 | 
						|
   10          CONTINUE
 | 
						|
   20       CONTINUE
 | 
						|
*
 | 
						|
*           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
 | 
						|
*
 | 
						|
            CALL DGEMQR( 'L', 'N', M, NRHS, N, A, LDA,
 | 
						|
     $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
            SCLLEN = M
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute LQ factorization of A
 | 
						|
*
 | 
						|
         CALL DGELQ( M, N, A, LDA, WORK( LW2+1 ), LW1,
 | 
						|
     $               WORK( 1 ), LW2, INFO )
 | 
						|
*
 | 
						|
*        workspace at least M, optimally M*NB.
 | 
						|
*
 | 
						|
         IF( .NOT.TRAN ) THEN
 | 
						|
*
 | 
						|
*           underdetermined system of equations A * X = B
 | 
						|
*
 | 
						|
*           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
 | 
						|
*
 | 
						|
            CALL DTRTRS( 'L', 'N', 'N', M, NRHS,
 | 
						|
     $                   A, LDA, B, LDB, INFO )
 | 
						|
*
 | 
						|
            IF( INFO.GT.0 ) THEN
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           B(M+1:N,1:NRHS) = 0
 | 
						|
*
 | 
						|
            DO 40 J = 1, NRHS
 | 
						|
               DO 30 I = M + 1, N
 | 
						|
                  B( I, J ) = ZERO
 | 
						|
   30          CONTINUE
 | 
						|
   40       CONTINUE
 | 
						|
*
 | 
						|
*           B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS)
 | 
						|
*
 | 
						|
            CALL DGEMLQ( 'L', 'T', N, NRHS, M, A, LDA,
 | 
						|
     $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*           workspace at least NRHS, optimally NRHS*NB
 | 
						|
*
 | 
						|
            SCLLEN = N
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           overdetermined system min || A**T * X - B ||
 | 
						|
*
 | 
						|
*           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
 | 
						|
*
 | 
						|
            CALL DGEMLQ( 'L', 'N', N, NRHS, M, A, LDA,
 | 
						|
     $                   WORK( LW2+1 ), LW1, B, LDB, WORK( 1 ), LW2,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*           workspace at least NRHS, optimally NRHS*NB
 | 
						|
*
 | 
						|
*           B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS)
 | 
						|
*
 | 
						|
            CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
 | 
						|
     $                   A, LDA, B, LDB, INFO )
 | 
						|
*
 | 
						|
            IF( INFO.GT.0 ) THEN
 | 
						|
               RETURN
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            SCLLEN = M
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling
 | 
						|
*
 | 
						|
      IF( IASCL.EQ.1 ) THEN
 | 
						|
        CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
 | 
						|
     $               INFO )
 | 
						|
      ELSE IF( IASCL.EQ.2 ) THEN
 | 
						|
        CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
 | 
						|
     $               INFO )
 | 
						|
      END IF
 | 
						|
      IF( IBSCL.EQ.1 ) THEN
 | 
						|
        CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
 | 
						|
     $               INFO )
 | 
						|
      ELSE IF( IBSCL.EQ.2 ) THEN
 | 
						|
        CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
 | 
						|
     $               INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   50 CONTINUE
 | 
						|
      WORK( 1 ) = DBLE( TSZO + LWO )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGETSLS
 | 
						|
*
 | 
						|
      END
 |