279 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAHILB
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAHILB( N, NRHS, A, LDA, X, LDX, B, LDB, WORK,
 | 
						|
*            INFO, PATH)
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER N, NRHS, LDA, LDX, LDB, INFO
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL WORK(N)
 | 
						|
*       COMPLEX A(LDA,N), X(LDX, NRHS), B(LDB, NRHS)
 | 
						|
*       CHARACTER*3        PATH
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLAHILB generates an N by N scaled Hilbert matrix in A along with
 | 
						|
*> NRHS right-hand sides in B and solutions in X such that A*X=B.
 | 
						|
*>
 | 
						|
*> The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all
 | 
						|
*> entries are integers.  The right-hand sides are the first NRHS
 | 
						|
*> columns of M * the identity matrix, and the solutions are the
 | 
						|
*> first NRHS columns of the inverse Hilbert matrix.
 | 
						|
*>
 | 
						|
*> The condition number of the Hilbert matrix grows exponentially with
 | 
						|
*> its size, roughly as O(e ** (3.5*N)).  Additionally, the inverse
 | 
						|
*> Hilbert matrices beyond a relatively small dimension cannot be
 | 
						|
*> generated exactly without extra precision.  Precision is exhausted
 | 
						|
*> when the largest entry in the inverse Hilbert matrix is greater than
 | 
						|
*> 2 to the power of the number of bits in the fraction of the data type
 | 
						|
*> used plus one, which is 24 for single precision.
 | 
						|
*>
 | 
						|
*> In single, the generated solution is exact for N <= 6 and has
 | 
						|
*> small componentwise error for 7 <= N <= 11.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The dimension of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The requested number of right-hand sides.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA, N)
 | 
						|
*>          The generated scaled Hilbert matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX array, dimension (LDX, NRHS)
 | 
						|
*>          The generated exact solutions.  Currently, the first NRHS
 | 
						|
*>          columns of the inverse Hilbert matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB, NRHS)
 | 
						|
*>          The generated right-hand sides.  Currently, the first NRHS
 | 
						|
*>          columns of LCM(1, 2, ..., 2*N-1) * the identity matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          = 1: N is too large; the data is still generated but may not
 | 
						|
*>               be not exact.
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PATH
 | 
						|
*> \verbatim
 | 
						|
*>          PATH is CHARACTER*3
 | 
						|
*>          The LAPACK path name.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex_matgen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAHILB( N, NRHS, A, LDA, X, LDX, B, LDB, WORK,
 | 
						|
     $     INFO, PATH)
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER N, NRHS, LDA, LDX, LDB, INFO
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL WORK(N)
 | 
						|
      COMPLEX A(LDA,N), X(LDX, NRHS), B(LDB, NRHS)
 | 
						|
      CHARACTER*3        PATH
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER TM, TI, R
 | 
						|
      INTEGER M
 | 
						|
      INTEGER I, J
 | 
						|
      COMPLEX TMP
 | 
						|
      CHARACTER*2 C2
 | 
						|
*     ..
 | 
						|
*     .. Parameters ..
 | 
						|
*     NMAX_EXACT   the largest dimension where the generated data is
 | 
						|
*                  exact.
 | 
						|
*     NMAX_APPROX  the largest dimension where the generated data has
 | 
						|
*                  a small componentwise relative error.
 | 
						|
*     ??? complex uses how many bits ???
 | 
						|
      INTEGER NMAX_EXACT, NMAX_APPROX, SIZE_D
 | 
						|
      PARAMETER (NMAX_EXACT = 6, NMAX_APPROX = 11, SIZE_D = 8)
 | 
						|
*
 | 
						|
*     d's are generated from random permutation of those eight elements.
 | 
						|
      COMPLEX D1(8), D2(8), INVD1(8), INVD2(8)
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions
 | 
						|
      EXTERNAL CLASET, LSAMEN
 | 
						|
      INTRINSIC REAL
 | 
						|
      LOGICAL LSAMEN
 | 
						|
      
 | 
						|
      DATA D1 /(-1,0),(0,1),(-1,-1),(0,-1),(1,0),(-1,1),(1,1),(1,-1)/
 | 
						|
      DATA D2 /(-1,0),(0,-1),(-1,1),(0,1),(1,0),(-1,-1),(1,-1),(1,1)/
 | 
						|
 | 
						|
      DATA INVD1 /(-1,0),(0,-1),(-.5,.5),(0,1),(1,0),
 | 
						|
     $     (-.5,-.5),(.5,-.5),(.5,.5)/
 | 
						|
      DATA INVD2 /(-1,0),(0,1),(-.5,-.5),(0,-1),(1,0),
 | 
						|
     $     (-.5,.5),(.5,.5),(.5,-.5)/
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
      C2 = PATH( 2: 3 )
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF (N .LT. 0 .OR. N .GT. NMAX_APPROX) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF (NRHS .LT. 0) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF (LDA .LT. N) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF (LDX .LT. N) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF (LDB .LT. N) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF (INFO .LT. 0) THEN
 | 
						|
         CALL XERBLA('CLAHILB', -INFO)
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      IF (N .GT. NMAX_EXACT) THEN
 | 
						|
         INFO = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute M = the LCM of the integers [1, 2*N-1].  The largest
 | 
						|
*     reasonable N is small enough that integers suffice (up to N = 11).
 | 
						|
      M = 1
 | 
						|
      DO I = 2, (2*N-1)
 | 
						|
         TM = M
 | 
						|
         TI = I
 | 
						|
         R = MOD(TM, TI)
 | 
						|
         DO WHILE (R .NE. 0)
 | 
						|
            TM = TI
 | 
						|
            TI = R
 | 
						|
            R = MOD(TM, TI)
 | 
						|
         END DO
 | 
						|
         M = (M / TI) * I
 | 
						|
      END DO
 | 
						|
*
 | 
						|
*     Generate the scaled Hilbert matrix in A
 | 
						|
*     If we are testing SY routines, take
 | 
						|
*          D1_i = D2_i, else, D1_i = D2_i*
 | 
						|
      IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
 | 
						|
         DO J = 1, N
 | 
						|
            DO I = 1, N
 | 
						|
               A(I, J) = D1(MOD(J,SIZE_D)+1) * (REAL(M) / (I + J - 1))
 | 
						|
     $              * D1(MOD(I,SIZE_D)+1)
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO J = 1, N
 | 
						|
            DO I = 1, N
 | 
						|
               A(I, J) = D1(MOD(J,SIZE_D)+1) * (REAL(M) / (I + J - 1))
 | 
						|
     $              * D2(MOD(I,SIZE_D)+1)
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Generate matrix B as simply the first NRHS columns of M * the
 | 
						|
*     identity.
 | 
						|
      TMP = REAL(M)
 | 
						|
      CALL CLASET('Full', N, NRHS, (0.0,0.0), TMP, B, LDB)
 | 
						|
*
 | 
						|
*     Generate the true solutions in X.  Because B = the first NRHS
 | 
						|
*     columns of M*I, the true solutions are just the first NRHS columns
 | 
						|
*     of the inverse Hilbert matrix.
 | 
						|
      WORK(1) = N
 | 
						|
      DO J = 2, N
 | 
						|
         WORK(J) = (  ( (WORK(J-1)/(J-1)) * (J-1 - N) ) /(J-1)  )
 | 
						|
     $        * (N +J -1)
 | 
						|
      END DO
 | 
						|
 | 
						|
*     If we are testing SY routines,
 | 
						|
*            take D1_i = D2_i, else, D1_i = D2_i*
 | 
						|
      IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
 | 
						|
         DO J = 1, NRHS
 | 
						|
            DO I = 1, N
 | 
						|
               X(I, J) =
 | 
						|
     $              INVD1(MOD(J,SIZE_D)+1) *
 | 
						|
     $              ((WORK(I)*WORK(J)) / (I + J - 1))
 | 
						|
     $              * INVD1(MOD(I,SIZE_D)+1)
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO J = 1, NRHS
 | 
						|
            DO I = 1, N
 | 
						|
               X(I, J) =
 | 
						|
     $              INVD2(MOD(J,SIZE_D)+1) *
 | 
						|
     $              ((WORK(I)*WORK(J)) / (I + J - 1))
 | 
						|
     $              * INVD1(MOD(I,SIZE_D)+1)
 | 
						|
            END DO
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
      END
 | 
						|
 |