259 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			259 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLATSY
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLATSY( UPLO, N, X, LDX, ISEED )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDX, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISEED( * )
 | 
						|
*       COMPLEX*16         X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLATSY generates a special test matrix for the complex symmetric
 | 
						|
*> (indefinite) factorization.  The pivot blocks of the generated matrix
 | 
						|
*> will be in the following order:
 | 
						|
*>    2x2 pivot block, non diagonalizable
 | 
						|
*>    1x1 pivot block
 | 
						|
*>    2x2 pivot block, diagonalizable
 | 
						|
*>    (cycle repeats)
 | 
						|
*> A row interchange is required for each non-diagonalizable 2x2 block.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER
 | 
						|
*>          Specifies whether the generated matrix is to be upper or
 | 
						|
*>          lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The dimension of the matrix to be generated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension (LDX,N)
 | 
						|
*>          The generated matrix, consisting of 3x3 and 2x2 diagonal
 | 
						|
*>          blocks which result in the pivot sequence given above.
 | 
						|
*>          The matrix outside of these diagonal blocks is zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry, the seed for the random number generator.  The last
 | 
						|
*>          of the four integers must be odd.  (modified on exit)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLATSY( UPLO, N, X, LDX, ISEED )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDX, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISEED( * )
 | 
						|
      COMPLEX*16         X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         EYE
 | 
						|
      PARAMETER          ( EYE = ( 0.0D0, 1.0D0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, N5
 | 
						|
      DOUBLE PRECISION   ALPHA, ALPHA3, BETA
 | 
						|
      COMPLEX*16         A, B, C, R
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      COMPLEX*16         ZLARND
 | 
						|
      EXTERNAL           ZLARND
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Initialize constants
 | 
						|
*
 | 
						|
      ALPHA = ( 1.D0+SQRT( 17.D0 ) ) / 8.D0
 | 
						|
      BETA = ALPHA - 1.D0 / 1000.D0
 | 
						|
      ALPHA3 = ALPHA*ALPHA*ALPHA
 | 
						|
*
 | 
						|
*     UPLO = 'U':  Upper triangular storage
 | 
						|
*
 | 
						|
      IF( UPLO.EQ.'U' ) THEN
 | 
						|
*
 | 
						|
*        Fill the upper triangle of the matrix with zeros.
 | 
						|
*
 | 
						|
         DO 20 J = 1, N
 | 
						|
            DO 10 I = 1, J
 | 
						|
               X( I, J ) = 0.0D0
 | 
						|
   10       CONTINUE
 | 
						|
   20    CONTINUE
 | 
						|
         N5 = N / 5
 | 
						|
         N5 = N - 5*N5 + 1
 | 
						|
*
 | 
						|
         DO 30 I = N, N5, -5
 | 
						|
            A = ALPHA3*ZLARND( 5, ISEED )
 | 
						|
            B = ZLARND( 5, ISEED ) / ALPHA
 | 
						|
            C = A - 2.D0*B*EYE
 | 
						|
            R = C / BETA
 | 
						|
            X( I, I ) = A
 | 
						|
            X( I-2, I ) = B
 | 
						|
            X( I-2, I-1 ) = R
 | 
						|
            X( I-2, I-2 ) = C
 | 
						|
            X( I-1, I-1 ) = ZLARND( 2, ISEED )
 | 
						|
            X( I-3, I-3 ) = ZLARND( 2, ISEED )
 | 
						|
            X( I-4, I-4 ) = ZLARND( 2, ISEED )
 | 
						|
            IF( ABS( X( I-3, I-3 ) ).GT.ABS( X( I-4, I-4 ) ) ) THEN
 | 
						|
               X( I-4, I-3 ) = 2.0D0*X( I-3, I-3 )
 | 
						|
            ELSE
 | 
						|
               X( I-4, I-3 ) = 2.0D0*X( I-4, I-4 )
 | 
						|
            END IF
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        Clean-up for N not a multiple of 5.
 | 
						|
*
 | 
						|
         I = N5 - 1
 | 
						|
         IF( I.GT.2 ) THEN
 | 
						|
            A = ALPHA3*ZLARND( 5, ISEED )
 | 
						|
            B = ZLARND( 5, ISEED ) / ALPHA
 | 
						|
            C = A - 2.D0*B*EYE
 | 
						|
            R = C / BETA
 | 
						|
            X( I, I ) = A
 | 
						|
            X( I-2, I ) = B
 | 
						|
            X( I-2, I-1 ) = R
 | 
						|
            X( I-2, I-2 ) = C
 | 
						|
            X( I-1, I-1 ) = ZLARND( 2, ISEED )
 | 
						|
            I = I - 3
 | 
						|
         END IF
 | 
						|
         IF( I.GT.1 ) THEN
 | 
						|
            X( I, I ) = ZLARND( 2, ISEED )
 | 
						|
            X( I-1, I-1 ) = ZLARND( 2, ISEED )
 | 
						|
            IF( ABS( X( I, I ) ).GT.ABS( X( I-1, I-1 ) ) ) THEN
 | 
						|
               X( I-1, I ) = 2.0D0*X( I, I )
 | 
						|
            ELSE
 | 
						|
               X( I-1, I ) = 2.0D0*X( I-1, I-1 )
 | 
						|
            END IF
 | 
						|
            I = I - 2
 | 
						|
         ELSE IF( I.EQ.1 ) THEN
 | 
						|
            X( I, I ) = ZLARND( 2, ISEED )
 | 
						|
            I = I - 1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*     UPLO = 'L':  Lower triangular storage
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Fill the lower triangle of the matrix with zeros.
 | 
						|
*
 | 
						|
         DO 50 J = 1, N
 | 
						|
            DO 40 I = J, N
 | 
						|
               X( I, J ) = 0.0D0
 | 
						|
   40       CONTINUE
 | 
						|
   50    CONTINUE
 | 
						|
         N5 = N / 5
 | 
						|
         N5 = N5*5
 | 
						|
*
 | 
						|
         DO 60 I = 1, N5, 5
 | 
						|
            A = ALPHA3*ZLARND( 5, ISEED )
 | 
						|
            B = ZLARND( 5, ISEED ) / ALPHA
 | 
						|
            C = A - 2.D0*B*EYE
 | 
						|
            R = C / BETA
 | 
						|
            X( I, I ) = A
 | 
						|
            X( I+2, I ) = B
 | 
						|
            X( I+2, I+1 ) = R
 | 
						|
            X( I+2, I+2 ) = C
 | 
						|
            X( I+1, I+1 ) = ZLARND( 2, ISEED )
 | 
						|
            X( I+3, I+3 ) = ZLARND( 2, ISEED )
 | 
						|
            X( I+4, I+4 ) = ZLARND( 2, ISEED )
 | 
						|
            IF( ABS( X( I+3, I+3 ) ).GT.ABS( X( I+4, I+4 ) ) ) THEN
 | 
						|
               X( I+4, I+3 ) = 2.0D0*X( I+3, I+3 )
 | 
						|
            ELSE
 | 
						|
               X( I+4, I+3 ) = 2.0D0*X( I+4, I+4 )
 | 
						|
            END IF
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
*        Clean-up for N not a multiple of 5.
 | 
						|
*
 | 
						|
         I = N5 + 1
 | 
						|
         IF( I.LT.N-1 ) THEN
 | 
						|
            A = ALPHA3*ZLARND( 5, ISEED )
 | 
						|
            B = ZLARND( 5, ISEED ) / ALPHA
 | 
						|
            C = A - 2.D0*B*EYE
 | 
						|
            R = C / BETA
 | 
						|
            X( I, I ) = A
 | 
						|
            X( I+2, I ) = B
 | 
						|
            X( I+2, I+1 ) = R
 | 
						|
            X( I+2, I+2 ) = C
 | 
						|
            X( I+1, I+1 ) = ZLARND( 2, ISEED )
 | 
						|
            I = I + 3
 | 
						|
         END IF
 | 
						|
         IF( I.LT.N ) THEN
 | 
						|
            X( I, I ) = ZLARND( 2, ISEED )
 | 
						|
            X( I+1, I+1 ) = ZLARND( 2, ISEED )
 | 
						|
            IF( ABS( X( I, I ) ).GT.ABS( X( I+1, I+1 ) ) ) THEN
 | 
						|
               X( I+1, I ) = 2.0D0*X( I, I )
 | 
						|
            ELSE
 | 
						|
               X( I+1, I ) = 2.0D0*X( I+1, I+1 )
 | 
						|
            END IF
 | 
						|
            I = I + 2
 | 
						|
         ELSE IF( I.EQ.N ) THEN
 | 
						|
            X( I, I ) = ZLARND( 2, ISEED )
 | 
						|
            I = I + 1
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLATSY
 | 
						|
*
 | 
						|
      END
 |