263 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CSTT22
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
 | 
						|
*                          LDWORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            KBAND, LDU, LDWORK, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
 | 
						|
*      $                   SD( * ), SE( * )
 | 
						|
*       COMPLEX            U( LDU, * ), WORK( LDWORK, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CSTT22  checks a set of M eigenvalues and eigenvectors,
 | 
						|
*>
 | 
						|
*>     A U = U S
 | 
						|
*>
 | 
						|
*> where A is Hermitian tridiagonal, the columns of U are unitary,
 | 
						|
*> and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1).
 | 
						|
*> Two tests are performed:
 | 
						|
*>
 | 
						|
*>    RESULT(1) = | U* A U - S | / ( |A| m ulp )
 | 
						|
*>
 | 
						|
*>    RESULT(2) = | I - U*U | / ( m ulp )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The size of the matrix.  If it is zero, CSTT22 does nothing.
 | 
						|
*>          It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of eigenpairs to check.  If it is zero, CSTT22
 | 
						|
*>          does nothing.  It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KBAND
 | 
						|
*> \verbatim
 | 
						|
*>          KBAND is INTEGER
 | 
						|
*>          The bandwidth of the matrix S.  It may only be zero or one.
 | 
						|
*>          If zero, then S is diagonal, and SE is not referenced.  If
 | 
						|
*>          one, then S is Hermitian tri-diagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AD
 | 
						|
*> \verbatim
 | 
						|
*>          AD is REAL array, dimension (N)
 | 
						|
*>          The diagonal of the original (unfactored) matrix A.  A is
 | 
						|
*>          assumed to be Hermitian tridiagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AE
 | 
						|
*> \verbatim
 | 
						|
*>          AE is REAL array, dimension (N)
 | 
						|
*>          The off-diagonal of the original (unfactored) matrix A.  A
 | 
						|
*>          is assumed to be Hermitian tridiagonal.  AE(1) is ignored,
 | 
						|
*>          AE(2) is the (1,2) and (2,1) element, etc.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SD
 | 
						|
*> \verbatim
 | 
						|
*>          SD is REAL array, dimension (N)
 | 
						|
*>          The diagonal of the (Hermitian tri-) diagonal matrix S.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SE
 | 
						|
*> \verbatim
 | 
						|
*>          SE is REAL array, dimension (N)
 | 
						|
*>          The off-diagonal of the (Hermitian tri-) diagonal matrix S.
 | 
						|
*>          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is
 | 
						|
*>          ignored, SE(2) is the (1,2) and (2,1) element, etc.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is REAL array, dimension (LDU, N)
 | 
						|
*>          The unitary matrix in the decomposition.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of U.  LDU must be at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (LDWORK, M+1)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LDWORK is INTEGER
 | 
						|
*>          The leading dimension of WORK.  LDWORK must be at least
 | 
						|
*>          max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (2)
 | 
						|
*>          The values computed by the two tests described above.  The
 | 
						|
*>          values are currently limited to 1/ulp, to avoid overflow.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
 | 
						|
     $                   LDWORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            KBAND, LDU, LDWORK, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
 | 
						|
     $                   SD( * ), SE( * )
 | 
						|
      COMPLEX            U( LDU, * ), WORK( LDWORK, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, K
 | 
						|
      REAL               ANORM, ULP, UNFL, WNORM
 | 
						|
      COMPLEX            AUKJ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               CLANGE, CLANSY, SLAMCH
 | 
						|
      EXTERNAL           CLANGE, CLANSY, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RESULT( 1 ) = ZERO
 | 
						|
      RESULT( 2 ) = ZERO
 | 
						|
      IF( N.LE.0 .OR. M.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
      ULP = SLAMCH( 'Epsilon' )
 | 
						|
*
 | 
						|
*     Do Test 1
 | 
						|
*
 | 
						|
*     Compute the 1-norm of A.
 | 
						|
*
 | 
						|
      IF( N.GT.1 ) THEN
 | 
						|
         ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) )
 | 
						|
         DO 10 J = 2, N - 1
 | 
						|
            ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+
 | 
						|
     $              ABS( AE( J-1 ) ) )
 | 
						|
   10    CONTINUE
 | 
						|
         ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) )
 | 
						|
      ELSE
 | 
						|
         ANORM = ABS( AD( 1 ) )
 | 
						|
      END IF
 | 
						|
      ANORM = MAX( ANORM, UNFL )
 | 
						|
*
 | 
						|
*     Norm of U*AU - S
 | 
						|
*
 | 
						|
      DO 40 I = 1, M
 | 
						|
         DO 30 J = 1, M
 | 
						|
            WORK( I, J ) = CZERO
 | 
						|
            DO 20 K = 1, N
 | 
						|
               AUKJ = AD( K )*U( K, J )
 | 
						|
               IF( K.NE.N )
 | 
						|
     $            AUKJ = AUKJ + AE( K )*U( K+1, J )
 | 
						|
               IF( K.NE.1 )
 | 
						|
     $            AUKJ = AUKJ + AE( K-1 )*U( K-1, J )
 | 
						|
               WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ
 | 
						|
   20       CONTINUE
 | 
						|
   30    CONTINUE
 | 
						|
         WORK( I, I ) = WORK( I, I ) - SD( I )
 | 
						|
         IF( KBAND.EQ.1 ) THEN
 | 
						|
            IF( I.NE.1 )
 | 
						|
     $         WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 )
 | 
						|
            IF( I.NE.N )
 | 
						|
     $         WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I )
 | 
						|
         END IF
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      WNORM = CLANSY( '1', 'L', M, WORK, M, RWORK )
 | 
						|
*
 | 
						|
      IF( ANORM.GT.WNORM ) THEN
 | 
						|
         RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
 | 
						|
      ELSE
 | 
						|
         IF( ANORM.LT.ONE ) THEN
 | 
						|
            RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
 | 
						|
         ELSE
 | 
						|
            RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Do Test 2
 | 
						|
*
 | 
						|
*     Compute  U*U - I
 | 
						|
*
 | 
						|
      CALL CGEMM( 'T', 'N', M, M, N, CONE, U, LDU, U, LDU, CZERO, WORK,
 | 
						|
     $            M )
 | 
						|
*
 | 
						|
      DO 50 J = 1, M
 | 
						|
         WORK( J, J ) = WORK( J, J ) - ONE
 | 
						|
   50 CONTINUE
 | 
						|
*
 | 
						|
      RESULT( 2 ) = MIN( REAL( M ), CLANGE( '1', M, M, WORK, M,
 | 
						|
     $              RWORK ) ) / ( M*ULP )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CSTT22
 | 
						|
*
 | 
						|
      END
 |