1003 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1003 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef int logical;
 | 
						|
typedef short int shortlogical;
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
#define F2C_proc_par_types 1
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__0 = 0;
 | 
						|
static integer c__1 = 1;
 | 
						|
static real c_b32 = 1.f;
 | 
						|
 | 
						|
/* > \brief \b SSTERF */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download SSTERF + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssterf.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssterf.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssterf.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE SSTERF( N, D, E, INFO ) */
 | 
						|
 | 
						|
/*       INTEGER            INFO, N */
 | 
						|
/*       REAL               D( * ), E( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > SSTERF computes all eigenvalues of a symmetric tridiagonal matrix */
 | 
						|
/* > using the Pal-Walker-Kahan variant of the QL or QR algorithm. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] D */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          D is REAL array, dimension (N) */
 | 
						|
/* >          On entry, the n diagonal elements of the tridiagonal matrix. */
 | 
						|
/* >          On exit, if INFO = 0, the eigenvalues in ascending order. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] E */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          E is REAL array, dimension (N-1) */
 | 
						|
/* >          On entry, the (n-1) subdiagonal elements of the tridiagonal */
 | 
						|
/* >          matrix. */
 | 
						|
/* >          On exit, E has been destroyed. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
/* >          > 0:  the algorithm failed to find all of the eigenvalues in */
 | 
						|
/* >                a total of 30*N iterations; if INFO = i, then i */
 | 
						|
/* >                elements of E have not converged to zero. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup auxOTHERcomputational */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void ssterf_(integer *n, real *d__, real *e, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer i__1;
 | 
						|
    real r__1, r__2, r__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real oldc;
 | 
						|
    integer lend, jtot;
 | 
						|
    extern /* Subroutine */ void slae2_(real *, real *, real *, real *, real *)
 | 
						|
	    ;
 | 
						|
    real c__;
 | 
						|
    integer i__, l, m;
 | 
						|
    real p, gamma, r__, s, alpha, sigma, anorm;
 | 
						|
    integer l1;
 | 
						|
    real bb;
 | 
						|
    extern real slapy2_(real *, real *);
 | 
						|
    integer iscale;
 | 
						|
    real oldgam;
 | 
						|
    extern real slamch_(char *);
 | 
						|
    real safmin;
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | 
						|
    real safmax;
 | 
						|
    extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | 
						|
	    real *, integer *, integer *, real *, integer *, integer *);
 | 
						|
    integer lendsv;
 | 
						|
    real ssfmin;
 | 
						|
    integer nmaxit;
 | 
						|
    real ssfmax;
 | 
						|
    extern real slanst_(char *, integer *, real *, real *);
 | 
						|
    extern /* Subroutine */ void slasrt_(char *, integer *, real *, integer *);
 | 
						|
    real rt1, rt2, eps, rte;
 | 
						|
    integer lsv;
 | 
						|
    real eps2;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK computational routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --e;
 | 
						|
    --d__;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n < 0) {
 | 
						|
	*info = -1;
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SSTERF", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
    if (*n <= 1) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Determine the unit roundoff for this environment. */
 | 
						|
 | 
						|
    eps = slamch_("E");
 | 
						|
/* Computing 2nd power */
 | 
						|
    r__1 = eps;
 | 
						|
    eps2 = r__1 * r__1;
 | 
						|
    safmin = slamch_("S");
 | 
						|
    safmax = 1.f / safmin;
 | 
						|
    ssfmax = sqrt(safmax) / 3.f;
 | 
						|
    ssfmin = sqrt(safmin) / eps2;
 | 
						|
 | 
						|
/*     Compute the eigenvalues of the tridiagonal matrix. */
 | 
						|
 | 
						|
    nmaxit = *n * 30;
 | 
						|
    sigma = 0.f;
 | 
						|
    jtot = 0;
 | 
						|
 | 
						|
/*     Determine where the matrix splits and choose QL or QR iteration */
 | 
						|
/*     for each block, according to whether top or bottom diagonal */
 | 
						|
/*     element is smaller. */
 | 
						|
 | 
						|
    l1 = 1;
 | 
						|
 | 
						|
L10:
 | 
						|
    if (l1 > *n) {
 | 
						|
	goto L170;
 | 
						|
    }
 | 
						|
    if (l1 > 1) {
 | 
						|
	e[l1 - 1] = 0.f;
 | 
						|
    }
 | 
						|
    i__1 = *n - 1;
 | 
						|
    for (m = l1; m <= i__1; ++m) {
 | 
						|
	if ((r__3 = e[m], abs(r__3)) <= sqrt((r__1 = d__[m], abs(r__1))) * 
 | 
						|
		sqrt((r__2 = d__[m + 1], abs(r__2))) * eps) {
 | 
						|
	    e[m] = 0.f;
 | 
						|
	    goto L30;
 | 
						|
	}
 | 
						|
/* L20: */
 | 
						|
    }
 | 
						|
    m = *n;
 | 
						|
 | 
						|
L30:
 | 
						|
    l = l1;
 | 
						|
    lsv = l;
 | 
						|
    lend = m;
 | 
						|
    lendsv = lend;
 | 
						|
    l1 = m + 1;
 | 
						|
    if (lend == l) {
 | 
						|
	goto L10;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Scale submatrix in rows and columns L to LEND */
 | 
						|
 | 
						|
    i__1 = lend - l + 1;
 | 
						|
    anorm = slanst_("M", &i__1, &d__[l], &e[l]);
 | 
						|
    iscale = 0;
 | 
						|
    if (anorm == 0.f) {
 | 
						|
	goto L10;
 | 
						|
    }
 | 
						|
    if (anorm > ssfmax) {
 | 
						|
	iscale = 1;
 | 
						|
	i__1 = lend - l + 1;
 | 
						|
	slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, 
 | 
						|
		info);
 | 
						|
	i__1 = lend - l;
 | 
						|
	slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, 
 | 
						|
		info);
 | 
						|
    } else if (anorm < ssfmin) {
 | 
						|
	iscale = 2;
 | 
						|
	i__1 = lend - l + 1;
 | 
						|
	slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, 
 | 
						|
		info);
 | 
						|
	i__1 = lend - l;
 | 
						|
	slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, 
 | 
						|
		info);
 | 
						|
    }
 | 
						|
 | 
						|
    i__1 = lend - 1;
 | 
						|
    for (i__ = l; i__ <= i__1; ++i__) {
 | 
						|
/* Computing 2nd power */
 | 
						|
	r__1 = e[i__];
 | 
						|
	e[i__] = r__1 * r__1;
 | 
						|
/* L40: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Choose between QL and QR iteration */
 | 
						|
 | 
						|
    if ((r__1 = d__[lend], abs(r__1)) < (r__2 = d__[l], abs(r__2))) {
 | 
						|
	lend = lsv;
 | 
						|
	l = lendsv;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lend >= l) {
 | 
						|
 | 
						|
/*        QL Iteration */
 | 
						|
 | 
						|
/*        Look for small subdiagonal element. */
 | 
						|
 | 
						|
L50:
 | 
						|
	if (l != lend) {
 | 
						|
	    i__1 = lend - 1;
 | 
						|
	    for (m = l; m <= i__1; ++m) {
 | 
						|
		if ((r__2 = e[m], abs(r__2)) <= eps2 * (r__1 = d__[m] * d__[m 
 | 
						|
			+ 1], abs(r__1))) {
 | 
						|
		    goto L70;
 | 
						|
		}
 | 
						|
/* L60: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	m = lend;
 | 
						|
 | 
						|
L70:
 | 
						|
	if (m < lend) {
 | 
						|
	    e[m] = 0.f;
 | 
						|
	}
 | 
						|
	p = d__[l];
 | 
						|
	if (m == l) {
 | 
						|
	    goto L90;
 | 
						|
	}
 | 
						|
 | 
						|
/*        If remaining matrix is 2 by 2, use SLAE2 to compute its */
 | 
						|
/*        eigenvalues. */
 | 
						|
 | 
						|
	if (m == l + 1) {
 | 
						|
	    rte = sqrt(e[l]);
 | 
						|
	    slae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
 | 
						|
	    d__[l] = rt1;
 | 
						|
	    d__[l + 1] = rt2;
 | 
						|
	    e[l] = 0.f;
 | 
						|
	    l += 2;
 | 
						|
	    if (l <= lend) {
 | 
						|
		goto L50;
 | 
						|
	    }
 | 
						|
	    goto L150;
 | 
						|
	}
 | 
						|
 | 
						|
	if (jtot == nmaxit) {
 | 
						|
	    goto L150;
 | 
						|
	}
 | 
						|
	++jtot;
 | 
						|
 | 
						|
/*        Form shift. */
 | 
						|
 | 
						|
	rte = sqrt(e[l]);
 | 
						|
	sigma = (d__[l + 1] - p) / (rte * 2.f);
 | 
						|
	r__ = slapy2_(&sigma, &c_b32);
 | 
						|
	sigma = p - rte / (sigma + r_sign(&r__, &sigma));
 | 
						|
 | 
						|
	c__ = 1.f;
 | 
						|
	s = 0.f;
 | 
						|
	gamma = d__[m] - sigma;
 | 
						|
	p = gamma * gamma;
 | 
						|
 | 
						|
/*        Inner loop */
 | 
						|
 | 
						|
	i__1 = l;
 | 
						|
	for (i__ = m - 1; i__ >= i__1; --i__) {
 | 
						|
	    bb = e[i__];
 | 
						|
	    r__ = p + bb;
 | 
						|
	    if (i__ != m - 1) {
 | 
						|
		e[i__ + 1] = s * r__;
 | 
						|
	    }
 | 
						|
	    oldc = c__;
 | 
						|
	    c__ = p / r__;
 | 
						|
	    s = bb / r__;
 | 
						|
	    oldgam = gamma;
 | 
						|
	    alpha = d__[i__];
 | 
						|
	    gamma = c__ * (alpha - sigma) - s * oldgam;
 | 
						|
	    d__[i__ + 1] = oldgam + (alpha - gamma);
 | 
						|
	    if (c__ != 0.f) {
 | 
						|
		p = gamma * gamma / c__;
 | 
						|
	    } else {
 | 
						|
		p = oldc * bb;
 | 
						|
	    }
 | 
						|
/* L80: */
 | 
						|
	}
 | 
						|
 | 
						|
	e[l] = s * p;
 | 
						|
	d__[l] = sigma + gamma;
 | 
						|
	goto L50;
 | 
						|
 | 
						|
/*        Eigenvalue found. */
 | 
						|
 | 
						|
L90:
 | 
						|
	d__[l] = p;
 | 
						|
 | 
						|
	++l;
 | 
						|
	if (l <= lend) {
 | 
						|
	    goto L50;
 | 
						|
	}
 | 
						|
	goto L150;
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        QR Iteration */
 | 
						|
 | 
						|
/*        Look for small superdiagonal element. */
 | 
						|
 | 
						|
L100:
 | 
						|
	i__1 = lend + 1;
 | 
						|
	for (m = l; m >= i__1; --m) {
 | 
						|
	    if ((r__2 = e[m - 1], abs(r__2)) <= eps2 * (r__1 = d__[m] * d__[m 
 | 
						|
		    - 1], abs(r__1))) {
 | 
						|
		goto L120;
 | 
						|
	    }
 | 
						|
/* L110: */
 | 
						|
	}
 | 
						|
	m = lend;
 | 
						|
 | 
						|
L120:
 | 
						|
	if (m > lend) {
 | 
						|
	    e[m - 1] = 0.f;
 | 
						|
	}
 | 
						|
	p = d__[l];
 | 
						|
	if (m == l) {
 | 
						|
	    goto L140;
 | 
						|
	}
 | 
						|
 | 
						|
/*        If remaining matrix is 2 by 2, use SLAE2 to compute its */
 | 
						|
/*        eigenvalues. */
 | 
						|
 | 
						|
	if (m == l - 1) {
 | 
						|
	    rte = sqrt(e[l - 1]);
 | 
						|
	    slae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
 | 
						|
	    d__[l] = rt1;
 | 
						|
	    d__[l - 1] = rt2;
 | 
						|
	    e[l - 1] = 0.f;
 | 
						|
	    l += -2;
 | 
						|
	    if (l >= lend) {
 | 
						|
		goto L100;
 | 
						|
	    }
 | 
						|
	    goto L150;
 | 
						|
	}
 | 
						|
 | 
						|
	if (jtot == nmaxit) {
 | 
						|
	    goto L150;
 | 
						|
	}
 | 
						|
	++jtot;
 | 
						|
 | 
						|
/*        Form shift. */
 | 
						|
 | 
						|
	rte = sqrt(e[l - 1]);
 | 
						|
	sigma = (d__[l - 1] - p) / (rte * 2.f);
 | 
						|
	r__ = slapy2_(&sigma, &c_b32);
 | 
						|
	sigma = p - rte / (sigma + r_sign(&r__, &sigma));
 | 
						|
 | 
						|
	c__ = 1.f;
 | 
						|
	s = 0.f;
 | 
						|
	gamma = d__[m] - sigma;
 | 
						|
	p = gamma * gamma;
 | 
						|
 | 
						|
/*        Inner loop */
 | 
						|
 | 
						|
	i__1 = l - 1;
 | 
						|
	for (i__ = m; i__ <= i__1; ++i__) {
 | 
						|
	    bb = e[i__];
 | 
						|
	    r__ = p + bb;
 | 
						|
	    if (i__ != m) {
 | 
						|
		e[i__ - 1] = s * r__;
 | 
						|
	    }
 | 
						|
	    oldc = c__;
 | 
						|
	    c__ = p / r__;
 | 
						|
	    s = bb / r__;
 | 
						|
	    oldgam = gamma;
 | 
						|
	    alpha = d__[i__ + 1];
 | 
						|
	    gamma = c__ * (alpha - sigma) - s * oldgam;
 | 
						|
	    d__[i__] = oldgam + (alpha - gamma);
 | 
						|
	    if (c__ != 0.f) {
 | 
						|
		p = gamma * gamma / c__;
 | 
						|
	    } else {
 | 
						|
		p = oldc * bb;
 | 
						|
	    }
 | 
						|
/* L130: */
 | 
						|
	}
 | 
						|
 | 
						|
	e[l - 1] = s * p;
 | 
						|
	d__[l] = sigma + gamma;
 | 
						|
	goto L100;
 | 
						|
 | 
						|
/*        Eigenvalue found. */
 | 
						|
 | 
						|
L140:
 | 
						|
	d__[l] = p;
 | 
						|
 | 
						|
	--l;
 | 
						|
	if (l >= lend) {
 | 
						|
	    goto L100;
 | 
						|
	}
 | 
						|
	goto L150;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
/*     Undo scaling if necessary */
 | 
						|
 | 
						|
L150:
 | 
						|
    if (iscale == 1) {
 | 
						|
	i__1 = lendsv - lsv + 1;
 | 
						|
	slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], 
 | 
						|
		n, info);
 | 
						|
    }
 | 
						|
    if (iscale == 2) {
 | 
						|
	i__1 = lendsv - lsv + 1;
 | 
						|
	slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], 
 | 
						|
		n, info);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Check for no convergence to an eigenvalue after a total */
 | 
						|
/*     of N*MAXIT iterations. */
 | 
						|
 | 
						|
    if (jtot < nmaxit) {
 | 
						|
	goto L10;
 | 
						|
    }
 | 
						|
    i__1 = *n - 1;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	if (e[i__] != 0.f) {
 | 
						|
	    ++(*info);
 | 
						|
	}
 | 
						|
/* L160: */
 | 
						|
    }
 | 
						|
    goto L180;
 | 
						|
 | 
						|
/*     Sort eigenvalues in increasing order. */
 | 
						|
 | 
						|
L170:
 | 
						|
    slasrt_("I", n, &d__[1], info);
 | 
						|
 | 
						|
L180:
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of SSTERF */
 | 
						|
 | 
						|
} /* ssterf_ */
 | 
						|
 |