246 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAUNHR_COL_GETRFNP
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAUNHR_COL_GETRFNP + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claunhr_col_getrfnp.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claunhr_col_getrfnp.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claunhr_col_getrfnp.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAUNHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), D( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLAUNHR_COL_GETRFNP computes the modified LU factorization without
 | 
						|
*> pivoting of a complex general M-by-N matrix A. The factorization has
 | 
						|
*> the form:
 | 
						|
*>
 | 
						|
*>     A - S = L * U,
 | 
						|
*>
 | 
						|
*> where:
 | 
						|
*>    S is a m-by-n diagonal sign matrix with the diagonal D, so that
 | 
						|
*>    D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
 | 
						|
*>    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
 | 
						|
*>    i-1 steps of Gaussian elimination. This means that the diagonal
 | 
						|
*>    element at each step of "modified" Gaussian elimination is
 | 
						|
*>    at least one in absolute value (so that division-by-zero not
 | 
						|
*>    not possible during the division by the diagonal element);
 | 
						|
*>
 | 
						|
*>    L is a M-by-N lower triangular matrix with unit diagonal elements
 | 
						|
*>    (lower trapezoidal if M > N);
 | 
						|
*>
 | 
						|
*>    and U is a M-by-N upper triangular matrix
 | 
						|
*>    (upper trapezoidal if M < N).
 | 
						|
*>
 | 
						|
*> This routine is an auxiliary routine used in the Householder
 | 
						|
*> reconstruction routine CUNHR_COL. In CUNHR_COL, this routine is
 | 
						|
*> applied to an M-by-N matrix A with orthonormal columns, where each
 | 
						|
*> element is bounded by one in absolute value. With the choice of
 | 
						|
*> the matrix S above, one can show that the diagonal element at each
 | 
						|
*> step of Gaussian elimination is the largest (in absolute value) in
 | 
						|
*> the column on or below the diagonal, so that no pivoting is required
 | 
						|
*> for numerical stability [1].
 | 
						|
*>
 | 
						|
*> For more details on the Householder reconstruction algorithm,
 | 
						|
*> including the modified LU factorization, see [1].
 | 
						|
*>
 | 
						|
*> This is the blocked right-looking version of the algorithm,
 | 
						|
*> calling Level 3 BLAS to update the submatrix. To factorize a block,
 | 
						|
*> this routine calls the recursive routine CLAUNHR_COL_GETRFNP2.
 | 
						|
*>
 | 
						|
*> [1] "Reconstructing Householder vectors from tall-skinny QR",
 | 
						|
*>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
 | 
						|
*>     E. Solomonik, J. Parallel Distrib. Comput.,
 | 
						|
*>     vol. 85, pp. 3-31, 2015.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix to be factored.
 | 
						|
*>          On exit, the factors L and U from the factorization
 | 
						|
*>          A-S=L*U; the unit diagonal elements of L are not stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is COMPLEX array, dimension min(M,N)
 | 
						|
*>          The diagonal elements of the diagonal M-by-N sign matrix S,
 | 
						|
*>          D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can be
 | 
						|
*>          only ( +1.0, 0.0 ) or (-1.0, 0.0 ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexGEcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> November 2019, Igor Kozachenko,
 | 
						|
*>                Computer Science Division,
 | 
						|
*>                University of California, Berkeley
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAUNHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
 | 
						|
      IMPLICIT NONE
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), D( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            CONE
 | 
						|
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            IINFO, J, JB, NB
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMM, CLAUNHR_COL_GETRFNP2, CTRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CLAUNHR_COL_GETRFNP', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( MIN( M, N ).EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine the block size for this environment.
 | 
						|
*
 | 
						|
 | 
						|
      NB = ILAENV( 1, 'CLAUNHR_COL_GETRFNP', ' ', M, N, -1, -1 )
 | 
						|
 | 
						|
      IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code.
 | 
						|
*
 | 
						|
         CALL CLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use blocked code.
 | 
						|
*
 | 
						|
         DO J = 1, MIN( M, N ), NB
 | 
						|
            JB = MIN( MIN( M, N )-J+1, NB )
 | 
						|
*
 | 
						|
*           Factor diagonal and subdiagonal blocks.
 | 
						|
*
 | 
						|
            CALL CLAUNHR_COL_GETRFNP2( M-J+1, JB, A( J, J ), LDA,
 | 
						|
     $                                 D( J ), IINFO )
 | 
						|
*
 | 
						|
            IF( J+JB.LE.N ) THEN
 | 
						|
*
 | 
						|
*              Compute block row of U.
 | 
						|
*
 | 
						|
               CALL CTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
 | 
						|
     $                     N-J-JB+1, CONE, A( J, J ), LDA, A( J, J+JB ),
 | 
						|
     $                     LDA )
 | 
						|
               IF( J+JB.LE.M ) THEN
 | 
						|
*
 | 
						|
*                 Update trailing submatrix.
 | 
						|
*
 | 
						|
                  CALL CGEMM( 'No transpose', 'No transpose', M-J-JB+1,
 | 
						|
     $                        N-J-JB+1, JB, -CONE, A( J+JB, J ), LDA,
 | 
						|
     $                        A( J, J+JB ), LDA, CONE, A( J+JB, J+JB ),
 | 
						|
     $                        LDA )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAUNHR_COL_GETRFNP
 | 
						|
*
 | 
						|
      END
 |