298 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			298 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZBDT01
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
 | |
| *                          RWORK, RESID )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            KD, LDA, LDPT, LDQ, M, N
 | |
| *       DOUBLE PRECISION   RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZBDT01 reconstructs a general matrix A from its bidiagonal form
 | |
| *>    A = Q * B * P'
 | |
| *> where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary
 | |
| *> matrices and B is bidiagonal.
 | |
| *>
 | |
| *> The test ratio to test the reduction is
 | |
| *>    RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
 | |
| *> where PT = P' and EPS is the machine precision.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrices A and Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and P'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          If KD = 0, B is diagonal and the array E is not referenced.
 | |
| *>          If KD = 1, the reduction was performed by xGEBRD; B is upper
 | |
| *>          bidiagonal if M >= N, and lower bidiagonal if M < N.
 | |
| *>          If KD = -1, the reduction was performed by xGBBRD; B is
 | |
| *>          always upper bidiagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          The m by n matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX*16 array, dimension (LDQ,N)
 | |
| *>          The m by min(m,n) unitary matrix Q in the reduction
 | |
| *>          A = Q * B * P'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.  LDQ >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (min(M,N))
 | |
| *>          The diagonal elements of the bidiagonal matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
 | |
| *>          The superdiagonal elements of the bidiagonal matrix B if
 | |
| *>          m >= n, or the subdiagonal elements of B if m < n.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PT
 | |
| *> \verbatim
 | |
| *>          PT is COMPLEX*16 array, dimension (LDPT,N)
 | |
| *>          The min(m,n) by n unitary matrix P' in the reduction
 | |
| *>          A = Q * B * P'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDPT
 | |
| *> \verbatim
 | |
| *>          LDPT is INTEGER
 | |
| *>          The leading dimension of the array PT.
 | |
| *>          LDPT >= max(1,min(M,N)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (M+N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is DOUBLE PRECISION
 | |
| *>          The test ratio:  norm(A - Q * B * P') / ( n * norm(A) * EPS )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
 | |
|      $                   RWORK, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            KD, LDA, LDPT, LDQ, M, N
 | |
|       DOUBLE PRECISION   RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       DOUBLE PRECISION   ANORM, EPS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, DZASUM, ZLANGE
 | |
|       EXTERNAL           DLAMCH, DZASUM, ZLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZCOPY, ZGEMV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, DCMPLX, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.LE.0 .OR. N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute A - Q * B * P' one column at a time.
 | |
| *
 | |
|       RESID = ZERO
 | |
|       IF( KD.NE.0 ) THEN
 | |
| *
 | |
| *        B is bidiagonal.
 | |
| *
 | |
|          IF( KD.NE.0 .AND. M.GE.N ) THEN
 | |
| *
 | |
| *           B is upper bidiagonal and M >= N.
 | |
| *
 | |
|             DO 20 J = 1, N
 | |
|                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
 | |
|                DO 10 I = 1, N - 1
 | |
|                   WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
 | |
|    10          CONTINUE
 | |
|                WORK( M+N ) = D( N )*PT( N, J )
 | |
|                CALL ZGEMV( 'No transpose', M, N, -DCMPLX( ONE ), Q, LDQ,
 | |
|      $                     WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
 | |
|                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
 | |
|    20       CONTINUE
 | |
|          ELSE IF( KD.LT.0 ) THEN
 | |
| *
 | |
| *           B is upper bidiagonal and M < N.
 | |
| *
 | |
|             DO 40 J = 1, N
 | |
|                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
 | |
|                DO 30 I = 1, M - 1
 | |
|                   WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
 | |
|    30          CONTINUE
 | |
|                WORK( M+M ) = D( M )*PT( M, J )
 | |
|                CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ,
 | |
|      $                     WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
 | |
|                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
 | |
|    40       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           B is lower bidiagonal.
 | |
| *
 | |
|             DO 60 J = 1, N
 | |
|                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
 | |
|                WORK( M+1 ) = D( 1 )*PT( 1, J )
 | |
|                DO 50 I = 2, M
 | |
|                   WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
 | |
|      $                          D( I )*PT( I, J )
 | |
|    50          CONTINUE
 | |
|                CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ,
 | |
|      $                     WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
 | |
|                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
 | |
|    60       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        B is diagonal.
 | |
| *
 | |
|          IF( M.GE.N ) THEN
 | |
|             DO 80 J = 1, N
 | |
|                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
 | |
|                DO 70 I = 1, N
 | |
|                   WORK( M+I ) = D( I )*PT( I, J )
 | |
|    70          CONTINUE
 | |
|                CALL ZGEMV( 'No transpose', M, N, -DCMPLX( ONE ), Q, LDQ,
 | |
|      $                     WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
 | |
|                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
 | |
|    80       CONTINUE
 | |
|          ELSE
 | |
|             DO 100 J = 1, N
 | |
|                CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 )
 | |
|                DO 90 I = 1, M
 | |
|                   WORK( M+I ) = D( I )*PT( I, J )
 | |
|    90          CONTINUE
 | |
|                CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ,
 | |
|      $                     WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 )
 | |
|                RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
 | |
|   100       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
 | |
| *
 | |
|       ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
 | |
|       EPS = DLAMCH( 'Precision' )
 | |
| *
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          IF( RESID.NE.ZERO )
 | |
|      $      RESID = ONE / EPS
 | |
|       ELSE
 | |
|          IF( ANORM.GE.RESID ) THEN
 | |
|             RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
 | |
|          ELSE
 | |
|             IF( ANORM.LT.ONE ) THEN
 | |
|                RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
 | |
|      $                 ( DBLE( N )*EPS )
 | |
|             ELSE
 | |
|                RESID = MIN( RESID / ANORM, DBLE( N ) ) /
 | |
|      $                 ( DBLE( N )*EPS )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZBDT01
 | |
| *
 | |
|       END
 |