823 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			823 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diagonal pivoting method.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLASYF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasyf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasyf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasyf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, KB, LDA, LDW, N, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               A( LDA, * ), W( LDW, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLASYF computes a partial factorization of a real symmetric matrix A
 | |
| *> using the Bunch-Kaufman diagonal pivoting method. The partial
 | |
| *> factorization has the form:
 | |
| *>
 | |
| *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
 | |
| *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
 | |
| *>
 | |
| *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L'
 | |
| *>       ( L21  I ) (  0  A22 ) (  0       I    )
 | |
| *>
 | |
| *> where the order of D is at most NB. The actual order is returned in
 | |
| *> the argument KB, and is either NB or NB-1, or N if N <= NB.
 | |
| *>
 | |
| *> SLASYF is an auxiliary routine called by SSYTRF. It uses blocked code
 | |
| *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
 | |
| *> A22 (if UPLO = 'L').
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The maximum number of columns of the matrix A that should be
 | |
| *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
 | |
| *>          blocks.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] KB
 | |
| *> \verbatim
 | |
| *>          KB is INTEGER
 | |
| *>          The number of columns of A that were actually factored.
 | |
| *>          KB is either NB-1 or NB, or N if N <= NB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | |
| *>          n-by-n upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading n-by-n lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>          On exit, A contains details of the partial factorization.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the block structure of D.
 | |
| *>
 | |
| *>          If UPLO = 'U':
 | |
| *>             Only the last KB elements of IPIV are set.
 | |
| *>
 | |
| *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
 | |
| *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
 | |
| *>
 | |
| *>             If IPIV(k) = IPIV(k-1) < 0, then rows and columns
 | |
| *>             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
 | |
| *>             is a 2-by-2 diagonal block.
 | |
| *>
 | |
| *>          If UPLO = 'L':
 | |
| *>             Only the first KB elements of IPIV are set.
 | |
| *>
 | |
| *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
 | |
| *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
 | |
| *>
 | |
| *>             If IPIV(k) = IPIV(k+1) < 0, then rows and columns
 | |
| *>             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
 | |
| *>             is a 2-by-2 diagonal block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (LDW,NB)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDW
 | |
| *> \verbatim
 | |
| *>          LDW is INTEGER
 | |
| *>          The leading dimension of the array W.  LDW >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
 | |
| *>               has been completed, but the block diagonal matrix D is
 | |
| *>               exactly singular.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2013
 | |
| *
 | |
| *> \ingroup realSYcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  November 2013,  Igor Kozachenko,
 | |
| *>                  Computer Science Division,
 | |
| *>                  University of California, Berkeley
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.5.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2013
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, KB, LDA, LDW, N, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               A( LDA, * ), W( LDW, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       REAL               EIGHT, SEVTEN
 | |
|       PARAMETER          ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
 | |
|      $                   KSTEP, KW
 | |
|       REAL               ABSAKK, ALPHA, COLMAX, D11, D21, D22, R1,
 | |
|      $                   ROWMAX, T
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ISAMAX
 | |
|       EXTERNAL           LSAME, ISAMAX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SGEMM, SGEMV, SSCAL, SSWAP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Initialize ALPHA for use in choosing pivot block size.
 | |
| *
 | |
|       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *        Factorize the trailing columns of A using the upper triangle
 | |
| *        of A and working backwards, and compute the matrix W = U12*D
 | |
| *        for use in updating A11
 | |
| *
 | |
| *        K is the main loop index, decreasing from N in steps of 1 or 2
 | |
| *
 | |
| *        KW is the column of W which corresponds to column K of A
 | |
| *
 | |
|          K = N
 | |
|    10    CONTINUE
 | |
|          KW = NB + K - N
 | |
| *
 | |
| *        Exit from loop
 | |
| *
 | |
|          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
 | |
|      $      GO TO 30
 | |
| *
 | |
| *        Copy column K of A to column KW of W and update it
 | |
| *
 | |
|          CALL SCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
 | |
|          IF( K.LT.N )
 | |
|      $      CALL SGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ), LDA,
 | |
|      $                  W( K, KW+1 ), LDW, ONE, W( 1, KW ), 1 )
 | |
| *
 | |
|          KSTEP = 1
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = ABS( W( K, KW ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value.
 | |
| *        Determine both COLMAX and IMAX.
 | |
| *
 | |
|          IF( K.GT.1 ) THEN
 | |
|             IMAX = ISAMAX( K-1, W( 1, KW ), 1 )
 | |
|             COLMAX = ABS( W( IMAX, KW ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | |
| *
 | |
| *           Column K is zero or underflow: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
|          ELSE
 | |
|             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
 | |
| *
 | |
| *              no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
|             ELSE
 | |
| *
 | |
| *              Copy column IMAX to column KW-1 of W and update it
 | |
| *
 | |
|                CALL SCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
 | |
|                CALL SCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
 | |
|      $                     W( IMAX+1, KW-1 ), 1 )
 | |
|                IF( K.LT.N )
 | |
|      $            CALL SGEMV( 'No transpose', K, N-K, -ONE, A( 1, K+1 ),
 | |
|      $                        LDA, W( IMAX, KW+1 ), LDW, ONE,
 | |
|      $                        W( 1, KW-1 ), 1 )
 | |
| *
 | |
| *              JMAX is the column-index of the largest off-diagonal
 | |
| *              element in row IMAX, and ROWMAX is its absolute value
 | |
| *
 | |
|                JMAX = IMAX + ISAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
 | |
|                ROWMAX = ABS( W( JMAX, KW-1 ) )
 | |
|                IF( IMAX.GT.1 ) THEN
 | |
|                   JMAX = ISAMAX( IMAX-1, W( 1, KW-1 ), 1 )
 | |
|                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, KW-1 ) ) )
 | |
|                END IF
 | |
| *
 | |
|                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
 | |
| *
 | |
| *                 no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                   KP = K
 | |
|                ELSE IF( ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
 | |
| *
 | |
| *                 interchange rows and columns K and IMAX, use 1-by-1
 | |
| *                 pivot block
 | |
| *
 | |
|                   KP = IMAX
 | |
| *
 | |
| *                 copy column KW-1 of W to column KW of W
 | |
| *
 | |
|                   CALL SCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
 | |
|                ELSE
 | |
| *
 | |
| *                 interchange rows and columns K-1 and IMAX, use 2-by-2
 | |
| *                 pivot block
 | |
| *
 | |
|                   KP = IMAX
 | |
|                   KSTEP = 2
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
| *           KK is the column of A where pivoting step stopped
 | |
| *
 | |
|             KK = K - KSTEP + 1
 | |
| *
 | |
| *           KKW is the column of W which corresponds to column KK of A
 | |
| *
 | |
|             KKW = NB + KK - N
 | |
| *
 | |
| *           Interchange rows and columns KP and KK.
 | |
| *           Updated column KP is already stored in column KKW of W.
 | |
| *
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *
 | |
| *              Copy non-updated column KK to column KP of submatrix A
 | |
| *              at step K. No need to copy element into column K
 | |
| *              (or K and K-1 for 2-by-2 pivot) of A, since these columns
 | |
| *              will be later overwritten.
 | |
| *
 | |
|                A( KP, KP ) = A( KK, KK )
 | |
|                CALL SCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
 | |
|      $                     LDA )
 | |
|                IF( KP.GT.1 )
 | |
|      $            CALL SCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
 | |
| *
 | |
| *              Interchange rows KK and KP in last K+1 to N columns of A
 | |
| *              (columns K (or K and K-1 for 2-by-2 pivot) of A will be
 | |
| *              later overwritten). Interchange rows KK and KP
 | |
| *              in last KKW to NB columns of W.
 | |
| *
 | |
|                IF( K.LT.N )
 | |
|      $            CALL SSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
 | |
|      $                        LDA )
 | |
|                CALL SSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
 | |
|      $                     LDW )
 | |
|             END IF
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column kw of W now holds
 | |
| *
 | |
| *              W(kw) = U(k)*D(k),
 | |
| *
 | |
| *              where U(k) is the k-th column of U
 | |
| *
 | |
| *              Store subdiag. elements of column U(k)
 | |
| *              and 1-by-1 block D(k) in column k of A.
 | |
| *              NOTE: Diagonal element U(k,k) is a UNIT element
 | |
| *              and not stored.
 | |
| *                 A(k,k) := D(k,k) = W(k,kw)
 | |
| *                 A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
 | |
| *
 | |
|                CALL SCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
 | |
|                R1 = ONE / A( K, K )
 | |
|                CALL SSCAL( K-1, R1, A( 1, K ), 1 )
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
 | |
| *
 | |
| *              ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
 | |
| *
 | |
| *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
 | |
| *              of U
 | |
| *
 | |
| *              Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
 | |
| *              block D(k-1:k,k-1:k) in columns k-1 and k of A.
 | |
| *              NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
 | |
| *              block and not stored.
 | |
| *                 A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
 | |
| *                 A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
 | |
| *                 = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
 | |
| *
 | |
|                IF( K.GT.2 ) THEN
 | |
| *
 | |
| *                 Compose the columns of the inverse of 2-by-2 pivot
 | |
| *                 block D in the following way to reduce the number
 | |
| *                 of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by
 | |
| *                 this inverse
 | |
| *
 | |
| *                 D**(-1) = ( d11 d21 )**(-1) =
 | |
| *                           ( d21 d22 )
 | |
| *
 | |
| *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
 | |
| *                                        ( (-d21 ) ( d11 ) )
 | |
| *
 | |
| *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
 | |
| *
 | |
| *                   * ( ( d22/d21 ) (      -1 ) ) =
 | |
| *                     ( (      -1 ) ( d11/d21 ) )
 | |
| *
 | |
| *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
 | |
| *                                           ( ( -1  ) ( D22 ) )
 | |
| *
 | |
| *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
 | |
| *                               ( (  -1 ) ( D22 ) )
 | |
| *
 | |
| *                 = D21 * ( ( D11 ) (  -1 ) )
 | |
| *                         ( (  -1 ) ( D22 ) )
 | |
| *
 | |
|                   D21 = W( K-1, KW )
 | |
|                   D11 = W( K, KW ) / D21
 | |
|                   D22 = W( K-1, KW-1 ) / D21
 | |
|                   T = ONE / ( D11*D22-ONE )
 | |
|                   D21 = T / D21
 | |
| *
 | |
| *                 Update elements in columns A(k-1) and A(k) as
 | |
| *                 dot products of rows of ( W(kw-1) W(kw) ) and columns
 | |
| *                 of D**(-1)
 | |
| *
 | |
|                   DO 20 J = 1, K - 2
 | |
|                      A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
 | |
|                      A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
 | |
|    20             CONTINUE
 | |
|                END IF
 | |
| *
 | |
| *              Copy D(k) to A
 | |
| *
 | |
|                A( K-1, K-1 ) = W( K-1, KW-1 )
 | |
|                A( K-1, K ) = W( K-1, KW )
 | |
|                A( K, K ) = W( K, KW )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -KP
 | |
|             IPIV( K-1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Decrease K and return to the start of the main loop
 | |
| *
 | |
|          K = K - KSTEP
 | |
|          GO TO 10
 | |
| *
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Update the upper triangle of A11 (= A(1:k,1:k)) as
 | |
| *
 | |
| *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
 | |
| *
 | |
| *        computing blocks of NB columns at a time
 | |
| *
 | |
|          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
 | |
|             JB = MIN( NB, K-J+1 )
 | |
| *
 | |
| *           Update the upper triangle of the diagonal block
 | |
| *
 | |
|             DO 40 JJ = J, J + JB - 1
 | |
|                CALL SGEMV( 'No transpose', JJ-J+1, N-K, -ONE,
 | |
|      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, ONE,
 | |
|      $                     A( J, JJ ), 1 )
 | |
|    40       CONTINUE
 | |
| *
 | |
| *           Update the rectangular superdiagonal block
 | |
| *
 | |
|             CALL SGEMM( 'No transpose', 'Transpose', J-1, JB, N-K, -ONE,
 | |
|      $                  A( 1, K+1 ), LDA, W( J, KW+1 ), LDW, ONE,
 | |
|      $                  A( 1, J ), LDA )
 | |
|    50    CONTINUE
 | |
| *
 | |
| *        Put U12 in standard form by partially undoing the interchanges
 | |
| *        in columns k+1:n looping backwards from k+1 to n
 | |
| *
 | |
|          J = K + 1
 | |
|    60    CONTINUE
 | |
| *
 | |
| *           Undo the interchanges (if any) of rows JJ and JP at each
 | |
| *           step J
 | |
| *
 | |
| *           (Here, J is a diagonal index)
 | |
|             JJ = J
 | |
|             JP = IPIV( J )
 | |
|             IF( JP.LT.0 ) THEN
 | |
|                JP = -JP
 | |
| *              (Here, J is a diagonal index)
 | |
|                J = J + 1
 | |
|             END IF
 | |
| *           (NOTE: Here, J is used to determine row length. Length N-J+1
 | |
| *           of the rows to swap back doesn't include diagonal element)
 | |
|             J = J + 1
 | |
|             IF( JP.NE.JJ .AND. J.LE.N )
 | |
|      $         CALL SSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
 | |
|          IF( J.LT.N )
 | |
|      $      GO TO 60
 | |
| *
 | |
| *        Set KB to the number of columns factorized
 | |
| *
 | |
|          KB = N - K
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Factorize the leading columns of A using the lower triangle
 | |
| *        of A and working forwards, and compute the matrix W = L21*D
 | |
| *        for use in updating A22
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 in steps of 1 or 2
 | |
| *
 | |
|          K = 1
 | |
|    70    CONTINUE
 | |
| *
 | |
| *        Exit from loop
 | |
| *
 | |
|          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
 | |
|      $      GO TO 90
 | |
| *
 | |
| *        Copy column K of A to column K of W and update it
 | |
| *
 | |
|          CALL SCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
 | |
|          CALL SGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ), LDA,
 | |
|      $               W( K, 1 ), LDW, ONE, W( K, K ), 1 )
 | |
| *
 | |
|          KSTEP = 1
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = ABS( W( K, K ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value.
 | |
| *        Determine both COLMAX and IMAX.
 | |
| *
 | |
|          IF( K.LT.N ) THEN
 | |
|             IMAX = K + ISAMAX( N-K, W( K+1, K ), 1 )
 | |
|             COLMAX = ABS( W( IMAX, K ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | |
| *
 | |
| *           Column K is zero or underflow: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
|          ELSE
 | |
|             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
 | |
| *
 | |
| *              no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
|             ELSE
 | |
| *
 | |
| *              Copy column IMAX to column K+1 of W and update it
 | |
| *
 | |
|                CALL SCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
 | |
|                CALL SCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
 | |
|      $                     1 )
 | |
|                CALL SGEMV( 'No transpose', N-K+1, K-1, -ONE, A( K, 1 ),
 | |
|      $                     LDA, W( IMAX, 1 ), LDW, ONE, W( K, K+1 ), 1 )
 | |
| *
 | |
| *              JMAX is the column-index of the largest off-diagonal
 | |
| *              element in row IMAX, and ROWMAX is its absolute value
 | |
| *
 | |
|                JMAX = K - 1 + ISAMAX( IMAX-K, W( K, K+1 ), 1 )
 | |
|                ROWMAX = ABS( W( JMAX, K+1 ) )
 | |
|                IF( IMAX.LT.N ) THEN
 | |
|                   JMAX = IMAX + ISAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
 | |
|                   ROWMAX = MAX( ROWMAX, ABS( W( JMAX, K+1 ) ) )
 | |
|                END IF
 | |
| *
 | |
|                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
 | |
| *
 | |
| *                 no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                   KP = K
 | |
|                ELSE IF( ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
 | |
| *
 | |
| *                 interchange rows and columns K and IMAX, use 1-by-1
 | |
| *                 pivot block
 | |
| *
 | |
|                   KP = IMAX
 | |
| *
 | |
| *                 copy column K+1 of W to column K of W
 | |
| *
 | |
|                   CALL SCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
 | |
|                ELSE
 | |
| *
 | |
| *                 interchange rows and columns K+1 and IMAX, use 2-by-2
 | |
| *                 pivot block
 | |
| *
 | |
|                   KP = IMAX
 | |
|                   KSTEP = 2
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
| *           KK is the column of A where pivoting step stopped
 | |
| *
 | |
|             KK = K + KSTEP - 1
 | |
| *
 | |
| *           Interchange rows and columns KP and KK.
 | |
| *           Updated column KP is already stored in column KK of W.
 | |
| *
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *
 | |
| *              Copy non-updated column KK to column KP of submatrix A
 | |
| *              at step K. No need to copy element into column K
 | |
| *              (or K and K+1 for 2-by-2 pivot) of A, since these columns
 | |
| *              will be later overwritten.
 | |
| *
 | |
|                A( KP, KP ) = A( KK, KK )
 | |
|                CALL SCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
 | |
|      $                     LDA )
 | |
|                IF( KP.LT.N )
 | |
|      $            CALL SCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
 | |
| *
 | |
| *              Interchange rows KK and KP in first K-1 columns of A
 | |
| *              (columns K (or K and K+1 for 2-by-2 pivot) of A will be
 | |
| *              later overwritten). Interchange rows KK and KP
 | |
| *              in first KK columns of W.
 | |
| *
 | |
|                IF( K.GT.1 )
 | |
|      $            CALL SSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
 | |
|                CALL SSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
 | |
|             END IF
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column k of W now holds
 | |
| *
 | |
| *              W(k) = L(k)*D(k),
 | |
| *
 | |
| *              where L(k) is the k-th column of L
 | |
| *
 | |
| *              Store subdiag. elements of column L(k)
 | |
| *              and 1-by-1 block D(k) in column k of A.
 | |
| *              (NOTE: Diagonal element L(k,k) is a UNIT element
 | |
| *              and not stored)
 | |
| *                 A(k,k) := D(k,k) = W(k,k)
 | |
| *                 A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
 | |
| *
 | |
|                CALL SCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
 | |
|                IF( K.LT.N ) THEN
 | |
|                   R1 = ONE / A( K, K )
 | |
|                   CALL SSCAL( N-K, R1, A( K+1, K ), 1 )
 | |
|                END IF
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
 | |
| *
 | |
| *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 | |
| *
 | |
| *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 | |
| *              of L
 | |
| *
 | |
| *              Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
 | |
| *              block D(k:k+1,k:k+1) in columns k and k+1 of A.
 | |
| *              (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
 | |
| *              block and not stored)
 | |
| *                 A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
 | |
| *                 A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
 | |
| *                 = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
 | |
| *
 | |
|                IF( K.LT.N-1 ) THEN
 | |
| *
 | |
| *                 Compose the columns of the inverse of 2-by-2 pivot
 | |
| *                 block D in the following way to reduce the number
 | |
| *                 of FLOPS when we myltiply panel ( W(k) W(k+1) ) by
 | |
| *                 this inverse
 | |
| *
 | |
| *                 D**(-1) = ( d11 d21 )**(-1) =
 | |
| *                           ( d21 d22 )
 | |
| *
 | |
| *                 = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) =
 | |
| *                                        ( (-d21 ) ( d11 ) )
 | |
| *
 | |
| *                 = 1/d21 * 1/((d11/d21)*(d22/d21)-1) *
 | |
| *
 | |
| *                   * ( ( d22/d21 ) (      -1 ) ) =
 | |
| *                     ( (      -1 ) ( d11/d21 ) )
 | |
| *
 | |
| *                 = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) (  -1 ) ) =
 | |
| *                                           ( ( -1  ) ( D22 ) )
 | |
| *
 | |
| *                 = 1/d21 * T * ( ( D11 ) (  -1 ) )
 | |
| *                               ( (  -1 ) ( D22 ) )
 | |
| *
 | |
| *                 = D21 * ( ( D11 ) (  -1 ) )
 | |
| *                         ( (  -1 ) ( D22 ) )
 | |
| *
 | |
|                   D21 = W( K+1, K )
 | |
|                   D11 = W( K+1, K+1 ) / D21
 | |
|                   D22 = W( K, K ) / D21
 | |
|                   T = ONE / ( D11*D22-ONE )
 | |
|                   D21 = T / D21
 | |
| *
 | |
| *                 Update elements in columns A(k) and A(k+1) as
 | |
| *                 dot products of rows of ( W(k) W(k+1) ) and columns
 | |
| *                 of D**(-1)
 | |
| *
 | |
|                   DO 80 J = K + 2, N
 | |
|                      A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
 | |
|                      A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
 | |
|    80             CONTINUE
 | |
|                END IF
 | |
| *
 | |
| *              Copy D(k) to A
 | |
| *
 | |
|                A( K, K ) = W( K, K )
 | |
|                A( K+1, K ) = W( K+1, K )
 | |
|                A( K+1, K+1 ) = W( K+1, K+1 )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -KP
 | |
|             IPIV( K+1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Increase K and return to the start of the main loop
 | |
| *
 | |
|          K = K + KSTEP
 | |
|          GO TO 70
 | |
| *
 | |
|    90    CONTINUE
 | |
| *
 | |
| *        Update the lower triangle of A22 (= A(k:n,k:n)) as
 | |
| *
 | |
| *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
 | |
| *
 | |
| *        computing blocks of NB columns at a time
 | |
| *
 | |
|          DO 110 J = K, N, NB
 | |
|             JB = MIN( NB, N-J+1 )
 | |
| *
 | |
| *           Update the lower triangle of the diagonal block
 | |
| *
 | |
|             DO 100 JJ = J, J + JB - 1
 | |
|                CALL SGEMV( 'No transpose', J+JB-JJ, K-1, -ONE,
 | |
|      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, ONE,
 | |
|      $                     A( JJ, JJ ), 1 )
 | |
|   100       CONTINUE
 | |
| *
 | |
| *           Update the rectangular subdiagonal block
 | |
| *
 | |
|             IF( J+JB.LE.N )
 | |
|      $         CALL SGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
 | |
|      $                     K-1, -ONE, A( J+JB, 1 ), LDA, W( J, 1 ), LDW,
 | |
|      $                     ONE, A( J+JB, J ), LDA )
 | |
|   110    CONTINUE
 | |
| *
 | |
| *        Put L21 in standard form by partially undoing the interchanges
 | |
| *        of rows in columns 1:k-1 looping backwards from k-1 to 1
 | |
| *
 | |
|          J = K - 1
 | |
|   120    CONTINUE
 | |
| *
 | |
| *           Undo the interchanges (if any) of rows JJ and JP at each
 | |
| *           step J
 | |
| *
 | |
| *           (Here, J is a diagonal index)
 | |
|             JJ = J
 | |
|             JP = IPIV( J )
 | |
|             IF( JP.LT.0 ) THEN
 | |
|                JP = -JP
 | |
| *              (Here, J is a diagonal index)
 | |
|                J = J - 1
 | |
|             END IF
 | |
| *           (NOTE: Here, J is used to determine row length. Length J
 | |
| *           of the rows to swap back doesn't include diagonal element)
 | |
|             J = J - 1
 | |
|             IF( JP.NE.JJ .AND. J.GE.1 )
 | |
|      $         CALL SSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
 | |
|          IF( J.GT.1 )
 | |
|      $      GO TO 120
 | |
| *
 | |
| *        Set KB to the number of columns factorized
 | |
| *
 | |
|          KB = K - 1
 | |
| *
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLASYF
 | |
| *
 | |
|       END
 |