275 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGTTS2 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtts2.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtts2.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtts2.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            ITRANS, LDB, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGTTS2 solves one of the systems of equations
 | |
| *>    A*X = B  or  A**T*X = B,
 | |
| *> with a tridiagonal matrix A using the LU factorization computed
 | |
| *> by SGTTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITRANS
 | |
| *> \verbatim
 | |
| *>          ITRANS is INTEGER
 | |
| *>          Specifies the form of the system of equations.
 | |
| *>          = 0:  A * X = B  (No transpose)
 | |
| *>          = 1:  A**T* X = B  (Transpose)
 | |
| *>          = 2:  A**T* X = B  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DL
 | |
| *> \verbatim
 | |
| *>          DL is REAL array, dimension (N-1)
 | |
| *>          The (n-1) multipliers that define the matrix L from the
 | |
| *>          LU factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The n diagonal elements of the upper triangular matrix U from
 | |
| *>          the LU factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DU
 | |
| *> \verbatim
 | |
| *>          DU is REAL array, dimension (N-1)
 | |
| *>          The (n-1) elements of the first super-diagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DU2
 | |
| *> \verbatim
 | |
| *>          DU2 is REAL array, dimension (N-2)
 | |
| *>          The (n-2) elements of the second super-diagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | |
| *>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | |
| *>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | |
| *>          required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,NRHS)
 | |
| *>          On entry, the matrix of right hand side vectors B.
 | |
| *>          On exit, B is overwritten by the solution vectors X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realGTcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            ITRANS, LDB, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IP, J
 | |
|       REAL               TEMP
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( ITRANS.EQ.0 ) THEN
 | |
| *
 | |
| *        Solve A*X = B using the LU factorization of A,
 | |
| *        overwriting each right hand side vector with its solution.
 | |
| *
 | |
|          IF( NRHS.LE.1 ) THEN
 | |
|             J = 1
 | |
|    10       CONTINUE
 | |
| *
 | |
| *           Solve L*x = b.
 | |
| *
 | |
|             DO 20 I = 1, N - 1
 | |
|                IP = IPIV( I )
 | |
|                TEMP = B( I+1-IP+I, J ) - DL( I )*B( IP, J )
 | |
|                B( I, J ) = B( IP, J )
 | |
|                B( I+1, J ) = TEMP
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Solve U*x = b.
 | |
| *
 | |
|             B( N, J ) = B( N, J ) / D( N )
 | |
|             IF( N.GT.1 )
 | |
|      $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
 | |
|      $                       D( N-1 )
 | |
|             DO 30 I = N - 2, 1, -1
 | |
|                B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
 | |
|      $                     B( I+2, J ) ) / D( I )
 | |
|    30       CONTINUE
 | |
|             IF( J.LT.NRHS ) THEN
 | |
|                J = J + 1
 | |
|                GO TO 10
 | |
|             END IF
 | |
|          ELSE
 | |
|             DO 60 J = 1, NRHS
 | |
| *
 | |
| *              Solve L*x = b.
 | |
| *
 | |
|                DO 40 I = 1, N - 1
 | |
|                   IF( IPIV( I ).EQ.I ) THEN
 | |
|                      B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
 | |
|                   ELSE
 | |
|                      TEMP = B( I, J )
 | |
|                      B( I, J ) = B( I+1, J )
 | |
|                      B( I+1, J ) = TEMP - DL( I )*B( I, J )
 | |
|                   END IF
 | |
|    40          CONTINUE
 | |
| *
 | |
| *              Solve U*x = b.
 | |
| *
 | |
|                B( N, J ) = B( N, J ) / D( N )
 | |
|                IF( N.GT.1 )
 | |
|      $            B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
 | |
|      $                          D( N-1 )
 | |
|                DO 50 I = N - 2, 1, -1
 | |
|                   B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
 | |
|      $                        B( I+2, J ) ) / D( I )
 | |
|    50          CONTINUE
 | |
|    60       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Solve A**T * X = B.
 | |
| *
 | |
|          IF( NRHS.LE.1 ) THEN
 | |
| *
 | |
| *           Solve U**T*x = b.
 | |
| *
 | |
|             J = 1
 | |
|    70       CONTINUE
 | |
|             B( 1, J ) = B( 1, J ) / D( 1 )
 | |
|             IF( N.GT.1 )
 | |
|      $         B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
 | |
|             DO 80 I = 3, N
 | |
|                B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
 | |
|      $                     B( I-2, J ) ) / D( I )
 | |
|    80       CONTINUE
 | |
| *
 | |
| *           Solve L**T*x = b.
 | |
| *
 | |
|             DO 90 I = N - 1, 1, -1
 | |
|                IP = IPIV( I )
 | |
|                TEMP = B( I, J ) - DL( I )*B( I+1, J )
 | |
|                B( I, J ) = B( IP, J )
 | |
|                B( IP, J ) = TEMP
 | |
|    90       CONTINUE
 | |
|             IF( J.LT.NRHS ) THEN
 | |
|                J = J + 1
 | |
|                GO TO 70
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
|             DO 120 J = 1, NRHS
 | |
| *
 | |
| *              Solve U**T*x = b.
 | |
| *
 | |
|                B( 1, J ) = B( 1, J ) / D( 1 )
 | |
|                IF( N.GT.1 )
 | |
|      $            B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
 | |
|                DO 100 I = 3, N
 | |
|                   B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
 | |
|      $                        DU2( I-2 )*B( I-2, J ) ) / D( I )
 | |
|   100          CONTINUE
 | |
|                DO 110 I = N - 1, 1, -1
 | |
|                   IF( IPIV( I ).EQ.I ) THEN
 | |
|                      B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
 | |
|                   ELSE
 | |
|                      TEMP = B( I+1, J )
 | |
|                      B( I+1, J ) = B( I, J ) - DL( I )*TEMP
 | |
|                      B( I, J ) = TEMP
 | |
|                   END IF
 | |
|   110          CONTINUE
 | |
|   120       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     End of SGTTS2
 | |
| *
 | |
|       END
 |