221 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SHST01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
 | 
						|
*                          LWORK, RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            IHI, ILO, LDA, LDH, LDQ, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
 | 
						|
*      $                   RESULT( 2 ), WORK( LWORK )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SHST01 tests the reduction of a general matrix A to upper Hessenberg
 | 
						|
*> form:  A = Q*H*Q'.  Two test ratios are computed;
 | 
						|
*>
 | 
						|
*> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
 | 
						|
*> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
 | 
						|
*>
 | 
						|
*> The matrix Q is assumed to be given explicitly as it would be
 | 
						|
*> following SGEHRD + SORGHR.
 | 
						|
*>
 | 
						|
*> In this version, ILO and IHI are not used and are assumed to be 1 and
 | 
						|
*> N, respectively.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>
 | 
						|
*>          A is assumed to be upper triangular in rows and columns
 | 
						|
*>          1:ILO-1 and IHI+1:N, so Q differs from the identity only in
 | 
						|
*>          rows and columns ILO+1:IHI.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The original n by n matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] H
 | 
						|
*> \verbatim
 | 
						|
*>          H is REAL array, dimension (LDH,N)
 | 
						|
*>          The upper Hessenberg matrix H from the reduction A = Q*H*Q'
 | 
						|
*>          as computed by SGEHRD.  H is assumed to be zero below the
 | 
						|
*>          first subdiagonal.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDH
 | 
						|
*> \verbatim
 | 
						|
*>          LDH is INTEGER
 | 
						|
*>          The leading dimension of the array H.  LDH >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is REAL array, dimension (LDQ,N)
 | 
						|
*>          The orthogonal matrix Q from the reduction A = Q*H*Q' as
 | 
						|
*>          computed by SGEHRD + SORGHR.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q.  LDQ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The length of the array WORK.  LWORK >= 2*N*N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (2)
 | 
						|
*>          RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
 | 
						|
*>          RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
 | 
						|
     $                   LWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            IHI, ILO, LDA, LDH, LDQ, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
 | 
						|
     $                   RESULT( 2 ), WORK( LWORK )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            LDWORK
 | 
						|
      REAL               ANORM, EPS, OVFL, SMLNUM, UNFL, WNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH, SLANGE
 | 
						|
      EXTERNAL           SLAMCH, SLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMM, SLABAD, SLACPY, SORT01
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESULT( 1 ) = ZERO
 | 
						|
         RESULT( 2 ) = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
      EPS = SLAMCH( 'Precision' )
 | 
						|
      OVFL = ONE / UNFL
 | 
						|
      CALL SLABAD( UNFL, OVFL )
 | 
						|
      SMLNUM = UNFL*N / EPS
 | 
						|
*
 | 
						|
*     Test 1:  Compute norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
 | 
						|
*
 | 
						|
*     Copy A to WORK
 | 
						|
*
 | 
						|
      LDWORK = MAX( 1, N )
 | 
						|
      CALL SLACPY( ' ', N, N, A, LDA, WORK, LDWORK )
 | 
						|
*
 | 
						|
*     Compute Q*H
 | 
						|
*
 | 
						|
      CALL SGEMM( 'No transpose', 'No transpose', N, N, N, ONE, Q, LDQ,
 | 
						|
     $            H, LDH, ZERO, WORK( LDWORK*N+1 ), LDWORK )
 | 
						|
*
 | 
						|
*     Compute A - Q*H*Q'
 | 
						|
*
 | 
						|
      CALL SGEMM( 'No transpose', 'Transpose', N, N, N, -ONE,
 | 
						|
     $            WORK( LDWORK*N+1 ), LDWORK, Q, LDQ, ONE, WORK,
 | 
						|
     $            LDWORK )
 | 
						|
*
 | 
						|
      ANORM = MAX( SLANGE( '1', N, N, A, LDA, WORK( LDWORK*N+1 ) ),
 | 
						|
     $        UNFL )
 | 
						|
      WNORM = SLANGE( '1', N, N, WORK, LDWORK, WORK( LDWORK*N+1 ) )
 | 
						|
*
 | 
						|
*     Note that RESULT(1) cannot overflow and is bounded by 1/(N*EPS)
 | 
						|
*
 | 
						|
      RESULT( 1 ) = MIN( WNORM, ANORM ) / MAX( SMLNUM, ANORM*EPS ) / N
 | 
						|
*
 | 
						|
*     Test 2:  Compute norm( I - Q'*Q ) / ( N * EPS )
 | 
						|
*
 | 
						|
      CALL SORT01( 'Columns', N, N, Q, LDQ, WORK, LWORK, RESULT( 2 ) )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SHST01
 | 
						|
*
 | 
						|
      END
 |