385 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			385 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGET22
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
 | 
						|
*                          WI, WORK, RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANSA, TRANSE, TRANSW
 | 
						|
*       INTEGER            LDA, LDE, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
 | 
						|
*      $                   WORK( * ), WR( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGET22 does an eigenvector check.
 | 
						|
*>
 | 
						|
*> The basic test is:
 | 
						|
*>
 | 
						|
*>    RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
 | 
						|
*>
 | 
						|
*> using the 1-norm.  It also tests the normalization of E:
 | 
						|
*>
 | 
						|
*>    RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
 | 
						|
*>                 j
 | 
						|
*>
 | 
						|
*> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
 | 
						|
*> vector.  If an eigenvector is complex, as determined from WI(j)
 | 
						|
*> nonzero, then the max-norm of the vector ( er + i*ei ) is the maximum
 | 
						|
*> of
 | 
						|
*>    |er(1)| + |ei(1)|, ... , |er(n)| + |ei(n)|
 | 
						|
*>
 | 
						|
*> W is a block diagonal matrix, with a 1 by 1 block for each real
 | 
						|
*> eigenvalue and a 2 by 2 block for each complex conjugate pair.
 | 
						|
*> If eigenvalues j and j+1 are a complex conjugate pair, so that
 | 
						|
*> WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 by 2
 | 
						|
*> block corresponding to the pair will be:
 | 
						|
*>
 | 
						|
*>    (  wr  wi  )
 | 
						|
*>    ( -wi  wr  )
 | 
						|
*>
 | 
						|
*> Such a block multiplying an n by 2 matrix ( ur ui ) on the right
 | 
						|
*> will be the same as multiplying  ur + i*ui  by  wr + i*wi.
 | 
						|
*>
 | 
						|
*> To handle various schemes for storage of left eigenvectors, there are
 | 
						|
*> options to use A-transpose instead of A, E-transpose instead of E,
 | 
						|
*> and/or W-transpose instead of W.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANSA
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSA is CHARACTER*1
 | 
						|
*>          Specifies whether or not A is transposed.
 | 
						|
*>          = 'N':  No transpose
 | 
						|
*>          = 'T':  Transpose
 | 
						|
*>          = 'C':  Conjugate transpose (= Transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANSE
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSE is CHARACTER*1
 | 
						|
*>          Specifies whether or not E is transposed.
 | 
						|
*>          = 'N':  No transpose, eigenvectors are in columns of E
 | 
						|
*>          = 'T':  Transpose, eigenvectors are in rows of E
 | 
						|
*>          = 'C':  Conjugate transpose (= Transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANSW
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSW is CHARACTER*1
 | 
						|
*>          Specifies whether or not W is transposed.
 | 
						|
*>          = 'N':  No transpose
 | 
						|
*>          = 'T':  Transpose, use -WI(j) instead of WI(j)
 | 
						|
*>          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The matrix whose eigenvectors are in E.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (LDE,N)
 | 
						|
*>          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
 | 
						|
*>          are stored in the columns of E, if TRANSE = 'T' or 'C', the
 | 
						|
*>          eigenvectors are stored in the rows of E.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDE
 | 
						|
*> \verbatim
 | 
						|
*>          LDE is INTEGER
 | 
						|
*>          The leading dimension of the array E.  LDE >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WR
 | 
						|
*> \verbatim
 | 
						|
*>          WR is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WI
 | 
						|
*> \verbatim
 | 
						|
*>          WI is REAL array, dimension (N)
 | 
						|
*>
 | 
						|
*>          The real and imaginary parts of the eigenvalues of A.
 | 
						|
*>          Purely real eigenvalues are indicated by WI(j) = 0.
 | 
						|
*>          Complex conjugate pairs are indicated by WR(j)=WR(j+1) and
 | 
						|
*>          WI(j) = - WI(j+1) non-zero; the real part is assumed to be
 | 
						|
*>          stored in the j-th row/column and the imaginary part in
 | 
						|
*>          the (j+1)-th row/column.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (N*(N+1))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (2)
 | 
						|
*>          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
 | 
						|
*>          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGET22( TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR,
 | 
						|
     $                   WI, WORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANSA, TRANSE, TRANSW
 | 
						|
      INTEGER            LDA, LDE, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), E( LDE, * ), RESULT( 2 ), WI( * ),
 | 
						|
     $                   WORK( * ), WR( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0, ONE = 1.0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      CHARACTER          NORMA, NORME
 | 
						|
      INTEGER            IECOL, IEROW, INCE, IPAIR, ITRNSE, J, JCOL,
 | 
						|
     $                   JVEC
 | 
						|
      REAL               ANORM, ENORM, ENRMAX, ENRMIN, ERRNRM, TEMP1,
 | 
						|
     $                   ULP, UNFL
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      REAL               WMAT( 2, 2 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SLAMCH, SLANGE
 | 
						|
      EXTERNAL           LSAME, SLAMCH, SLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SAXPY, SGEMM, SLASET
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Initialize RESULT (in case N=0)
 | 
						|
*
 | 
						|
      RESULT( 1 ) = ZERO
 | 
						|
      RESULT( 2 ) = ZERO
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
      ULP = SLAMCH( 'Precision' )
 | 
						|
*
 | 
						|
      ITRNSE = 0
 | 
						|
      INCE = 1
 | 
						|
      NORMA = 'O'
 | 
						|
      NORME = 'O'
 | 
						|
*
 | 
						|
      IF( LSAME( TRANSA, 'T' ) .OR. LSAME( TRANSA, 'C' ) ) THEN
 | 
						|
         NORMA = 'I'
 | 
						|
      END IF
 | 
						|
      IF( LSAME( TRANSE, 'T' ) .OR. LSAME( TRANSE, 'C' ) ) THEN
 | 
						|
         NORME = 'I'
 | 
						|
         ITRNSE = 1
 | 
						|
         INCE = LDE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check normalization of E
 | 
						|
*
 | 
						|
      ENRMIN = ONE / ULP
 | 
						|
      ENRMAX = ZERO
 | 
						|
      IF( ITRNSE.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Eigenvectors are column vectors.
 | 
						|
*
 | 
						|
         IPAIR = 0
 | 
						|
         DO 30 JVEC = 1, N
 | 
						|
            TEMP1 = ZERO
 | 
						|
            IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
 | 
						|
     $         IPAIR = 1
 | 
						|
            IF( IPAIR.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*              Complex eigenvector
 | 
						|
*
 | 
						|
               DO 10 J = 1, N
 | 
						|
                  TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) )+
 | 
						|
     $                    ABS( E( J, JVEC+1 ) ) )
 | 
						|
   10          CONTINUE
 | 
						|
               ENRMIN = MIN( ENRMIN, TEMP1 )
 | 
						|
               ENRMAX = MAX( ENRMAX, TEMP1 )
 | 
						|
               IPAIR = 2
 | 
						|
            ELSE IF( IPAIR.EQ.2 ) THEN
 | 
						|
               IPAIR = 0
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Real eigenvector
 | 
						|
*
 | 
						|
               DO 20 J = 1, N
 | 
						|
                  TEMP1 = MAX( TEMP1, ABS( E( J, JVEC ) ) )
 | 
						|
   20          CONTINUE
 | 
						|
               ENRMIN = MIN( ENRMIN, TEMP1 )
 | 
						|
               ENRMAX = MAX( ENRMAX, TEMP1 )
 | 
						|
               IPAIR = 0
 | 
						|
            END IF
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Eigenvectors are row vectors.
 | 
						|
*
 | 
						|
         DO 40 JVEC = 1, N
 | 
						|
            WORK( JVEC ) = ZERO
 | 
						|
   40    CONTINUE
 | 
						|
*
 | 
						|
         DO 60 J = 1, N
 | 
						|
            IPAIR = 0
 | 
						|
            DO 50 JVEC = 1, N
 | 
						|
               IF( IPAIR.EQ.0 .AND. JVEC.LT.N .AND. WI( JVEC ).NE.ZERO )
 | 
						|
     $            IPAIR = 1
 | 
						|
               IF( IPAIR.EQ.1 ) THEN
 | 
						|
                  WORK( JVEC ) = MAX( WORK( JVEC ),
 | 
						|
     $                           ABS( E( J, JVEC ) )+ABS( E( J,
 | 
						|
     $                           JVEC+1 ) ) )
 | 
						|
                  WORK( JVEC+1 ) = WORK( JVEC )
 | 
						|
               ELSE IF( IPAIR.EQ.2 ) THEN
 | 
						|
                  IPAIR = 0
 | 
						|
               ELSE
 | 
						|
                  WORK( JVEC ) = MAX( WORK( JVEC ),
 | 
						|
     $                           ABS( E( J, JVEC ) ) )
 | 
						|
                  IPAIR = 0
 | 
						|
               END IF
 | 
						|
   50       CONTINUE
 | 
						|
   60    CONTINUE
 | 
						|
*
 | 
						|
         DO 70 JVEC = 1, N
 | 
						|
            ENRMIN = MIN( ENRMIN, WORK( JVEC ) )
 | 
						|
            ENRMAX = MAX( ENRMAX, WORK( JVEC ) )
 | 
						|
   70    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Norm of A:
 | 
						|
*
 | 
						|
      ANORM = MAX( SLANGE( NORMA, N, N, A, LDA, WORK ), UNFL )
 | 
						|
*
 | 
						|
*     Norm of E:
 | 
						|
*
 | 
						|
      ENORM = MAX( SLANGE( NORME, N, N, E, LDE, WORK ), ULP )
 | 
						|
*
 | 
						|
*     Norm of error:
 | 
						|
*
 | 
						|
*     Error =  AE - EW
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
 | 
						|
*
 | 
						|
      IPAIR = 0
 | 
						|
      IEROW = 1
 | 
						|
      IECOL = 1
 | 
						|
*
 | 
						|
      DO 80 JCOL = 1, N
 | 
						|
         IF( ITRNSE.EQ.1 ) THEN
 | 
						|
            IEROW = JCOL
 | 
						|
         ELSE
 | 
						|
            IECOL = JCOL
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( IPAIR.EQ.0 .AND. WI( JCOL ).NE.ZERO )
 | 
						|
     $      IPAIR = 1
 | 
						|
*
 | 
						|
         IF( IPAIR.EQ.1 ) THEN
 | 
						|
            WMAT( 1, 1 ) = WR( JCOL )
 | 
						|
            WMAT( 2, 1 ) = -WI( JCOL )
 | 
						|
            WMAT( 1, 2 ) = WI( JCOL )
 | 
						|
            WMAT( 2, 2 ) = WR( JCOL )
 | 
						|
            CALL SGEMM( TRANSE, TRANSW, N, 2, 2, ONE, E( IEROW, IECOL ),
 | 
						|
     $                  LDE, WMAT, 2, ZERO, WORK( N*( JCOL-1 )+1 ), N )
 | 
						|
            IPAIR = 2
 | 
						|
         ELSE IF( IPAIR.EQ.2 ) THEN
 | 
						|
            IPAIR = 0
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
            CALL SAXPY( N, WR( JCOL ), E( IEROW, IECOL ), INCE,
 | 
						|
     $                  WORK( N*( JCOL-1 )+1 ), 1 )
 | 
						|
            IPAIR = 0
 | 
						|
         END IF
 | 
						|
*
 | 
						|
   80 CONTINUE
 | 
						|
*
 | 
						|
      CALL SGEMM( TRANSA, TRANSE, N, N, N, ONE, A, LDA, E, LDE, -ONE,
 | 
						|
     $            WORK, N )
 | 
						|
*
 | 
						|
      ERRNRM = SLANGE( 'One', N, N, WORK, N, WORK( N*N+1 ) ) / ENORM
 | 
						|
*
 | 
						|
*     Compute RESULT(1) (avoiding under/overflow)
 | 
						|
*
 | 
						|
      IF( ANORM.GT.ERRNRM ) THEN
 | 
						|
         RESULT( 1 ) = ( ERRNRM / ANORM ) / ULP
 | 
						|
      ELSE
 | 
						|
         IF( ANORM.LT.ONE ) THEN
 | 
						|
            RESULT( 1 ) = ( MIN( ERRNRM, ANORM ) / ANORM ) / ULP
 | 
						|
         ELSE
 | 
						|
            RESULT( 1 ) = MIN( ERRNRM / ANORM, ONE ) / ULP
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute RESULT(2) : the normalization error in E.
 | 
						|
*
 | 
						|
      RESULT( 2 ) = MAX( ABS( ENRMAX-ONE ), ABS( ENRMIN-ONE ) ) /
 | 
						|
     $              ( REAL( N )*ULP )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGET22
 | 
						|
*
 | 
						|
      END
 |