272 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGET51
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
 | 
						|
*                          RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            ITYPE, LDA, LDB, LDU, LDV, N
 | 
						|
*       DOUBLE PRECISION   RESULT
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), U( LDU, * ),
 | 
						|
*      $                   V( LDV, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>      DGET51  generally checks a decomposition of the form
 | 
						|
*>
 | 
						|
*>              A = U B V'
 | 
						|
*>
 | 
						|
*>      where ' means transpose and U and V are orthogonal.
 | 
						|
*>
 | 
						|
*>      Specifically, if ITYPE=1
 | 
						|
*>
 | 
						|
*>              RESULT = | A - U B V' | / ( |A| n ulp )
 | 
						|
*>
 | 
						|
*>      If ITYPE=2, then:
 | 
						|
*>
 | 
						|
*>              RESULT = | A - B | / ( |A| n ulp )
 | 
						|
*>
 | 
						|
*>      If ITYPE=3, then:
 | 
						|
*>
 | 
						|
*>              RESULT = | I - UU' | / ( n ulp )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITYPE
 | 
						|
*> \verbatim
 | 
						|
*>          ITYPE is INTEGER
 | 
						|
*>          Specifies the type of tests to be performed.
 | 
						|
*>          =1: RESULT = | A - U B V' | / ( |A| n ulp )
 | 
						|
*>          =2: RESULT = | A - B | / ( |A| n ulp )
 | 
						|
*>          =3: RESULT = | I - UU' | / ( n ulp )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The size of the matrix.  If it is zero, DGET51 does nothing.
 | 
						|
*>          It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA, N)
 | 
						|
*>          The original (unfactored) matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB, N)
 | 
						|
*>          The factored matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is DOUBLE PRECISION array, dimension (LDU, N)
 | 
						|
*>          The orthogonal matrix on the left-hand side in the
 | 
						|
*>          decomposition.
 | 
						|
*>          Not referenced if ITYPE=2
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of U.  LDU must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is DOUBLE PRECISION array, dimension (LDV, N)
 | 
						|
*>          The orthogonal matrix on the left-hand side in the
 | 
						|
*>          decomposition.
 | 
						|
*>          Not referenced if ITYPE=2
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of V.  LDV must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (2*N**2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION
 | 
						|
*>          The values computed by the test specified by ITYPE.  The
 | 
						|
*>          value is currently limited to 1/ulp, to avoid overflow.
 | 
						|
*>          Errors are flagged by RESULT=10/ulp.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGET51( ITYPE, N, A, LDA, B, LDB, U, LDU, V, LDV, WORK,
 | 
						|
     $                   RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            ITYPE, LDA, LDB, LDU, LDV, N
 | 
						|
      DOUBLE PRECISION   RESULT
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), U( LDU, * ),
 | 
						|
     $                   V( LDV, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE, TEN
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            JCOL, JDIAG, JROW
 | 
						|
      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE
 | 
						|
      EXTERNAL           DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DLACPY
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RESULT = ZERO
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Constants
 | 
						|
*
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | 
						|
*
 | 
						|
*     Some Error Checks
 | 
						|
*
 | 
						|
      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | 
						|
         RESULT = TEN / ULP
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( ITYPE.LE.2 ) THEN
 | 
						|
*
 | 
						|
*        Tests scaled by the norm(A)
 | 
						|
*
 | 
						|
         ANORM = MAX( DLANGE( '1', N, N, A, LDA, WORK ), UNFL )
 | 
						|
*
 | 
						|
         IF( ITYPE.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           ITYPE=1: Compute W = A - UBV'
 | 
						|
*
 | 
						|
            CALL DLACPY( ' ', N, N, A, LDA, WORK, N )
 | 
						|
            CALL DGEMM( 'N', 'N', N, N, N, ONE, U, LDU, B, LDB, ZERO,
 | 
						|
     $                  WORK( N**2+1 ), N )
 | 
						|
*
 | 
						|
            CALL DGEMM( 'N', 'C', N, N, N, -ONE, WORK( N**2+1 ), N, V,
 | 
						|
     $                  LDV, ONE, WORK, N )
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           ITYPE=2: Compute W = A - B
 | 
						|
*
 | 
						|
            CALL DLACPY( ' ', N, N, B, LDB, WORK, N )
 | 
						|
*
 | 
						|
            DO 20 JCOL = 1, N
 | 
						|
               DO 10 JROW = 1, N
 | 
						|
                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
 | 
						|
     $                - A( JROW, JCOL )
 | 
						|
   10          CONTINUE
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Compute norm(W)/ ( ulp*norm(A) )
 | 
						|
*
 | 
						|
         WNORM = DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) )
 | 
						|
*
 | 
						|
         IF( ANORM.GT.WNORM ) THEN
 | 
						|
            RESULT = ( WNORM / ANORM ) / ( N*ULP )
 | 
						|
         ELSE
 | 
						|
            IF( ANORM.LT.ONE ) THEN
 | 
						|
               RESULT = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
 | 
						|
            ELSE
 | 
						|
               RESULT = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Tests not scaled by norm(A)
 | 
						|
*
 | 
						|
*        ITYPE=3: Compute  UU' - I
 | 
						|
*
 | 
						|
         CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
 | 
						|
     $               N )
 | 
						|
*
 | 
						|
         DO 30 JDIAG = 1, N
 | 
						|
            WORK( ( N+1 )*( JDIAG-1 )+1 ) = WORK( ( N+1 )*( JDIAG-1 )+
 | 
						|
     $         1 ) - ONE
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
         RESULT = MIN( DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ),
 | 
						|
     $            DBLE( N ) ) / ( N*ULP )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGET51
 | 
						|
*
 | 
						|
      END
 |