972 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			972 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static complex c_b1 = {0.f,0.f};
 | |
| static complex c_b2 = {1.f,0.f};
 | |
| static integer c__1 = 1;
 | |
| static integer c__0 = 0;
 | |
| static integer c__5 = 5;
 | |
| 
 | |
| /* > \brief \b CLATME */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CLATME( N, DIST, ISEED, D, MODE, COND, DMAX, */
 | |
| /*         RSIGN, */
 | |
| /*                          UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, */
 | |
| /*         A, */
 | |
| /*                          LDA, WORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          DIST, RSIGN, SIM, UPPER */
 | |
| /*       INTEGER            INFO, KL, KU, LDA, MODE, MODES, N */
 | |
| /*       REAL               ANORM, COND, CONDS */
 | |
| /*       COMPLEX            DMAX */
 | |
| /*       INTEGER            ISEED( 4 ) */
 | |
| /*       REAL               DS( * ) */
 | |
| /*       COMPLEX            A( LDA, * ), D( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    CLATME generates random non-symmetric square matrices with */
 | |
| /* >    specified eigenvalues for testing LAPACK programs. */
 | |
| /* > */
 | |
| /* >    CLATME operates by applying the following sequence of */
 | |
| /* >    operations: */
 | |
| /* > */
 | |
| /* >    1. Set the diagonal to D, where D may be input or */
 | |
| /* >         computed according to MODE, COND, DMAX, and RSIGN */
 | |
| /* >         as described below. */
 | |
| /* > */
 | |
| /* >    2. If UPPER='T', the upper triangle of A is set to random values */
 | |
| /* >         out of distribution DIST. */
 | |
| /* > */
 | |
| /* >    3. If SIM='T', A is multiplied on the left by a random matrix */
 | |
| /* >         X, whose singular values are specified by DS, MODES, and */
 | |
| /* >         CONDS, and on the right by X inverse. */
 | |
| /* > */
 | |
| /* >    4. If KL < N-1, the lower bandwidth is reduced to KL using */
 | |
| /* >         Householder transformations.  If KU < N-1, the upper */
 | |
| /* >         bandwidth is reduced to KU. */
 | |
| /* > */
 | |
| /* >    5. If ANORM is not negative, the matrix is scaled to have */
 | |
| /* >         maximum-element-norm ANORM. */
 | |
| /* > */
 | |
| /* >    (Note: since the matrix cannot be reduced beyond Hessenberg form, */
 | |
| /* >     no packing options are available.) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >           The number of columns (or rows) of A. Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIST */
 | |
| /* > \verbatim */
 | |
| /* >          DIST is CHARACTER*1 */
 | |
| /* >           On entry, DIST specifies the type of distribution to be used */
 | |
| /* >           to generate the random eigen-/singular values, and on the */
 | |
| /* >           upper triangle (see UPPER). */
 | |
| /* >           'U' => UNIFORM( 0, 1 )  ( 'U' for uniform ) */
 | |
| /* >           'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
 | |
| /* >           'N' => NORMAL( 0, 1 )   ( 'N' for normal ) */
 | |
| /* >           'D' => uniform on the complex disc |z| < 1. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] ISEED */
 | |
| /* > \verbatim */
 | |
| /* >          ISEED is INTEGER array, dimension ( 4 ) */
 | |
| /* >           On entry ISEED specifies the seed of the random number */
 | |
| /* >           generator. They should lie between 0 and 4095 inclusive, */
 | |
| /* >           and ISEED(4) should be odd. The random number generator */
 | |
| /* >           uses a linear congruential sequence limited to small */
 | |
| /* >           integers, and so should produce machine independent */
 | |
| /* >           random numbers. The values of ISEED are changed on */
 | |
| /* >           exit, and can be used in the next call to CLATME */
 | |
| /* >           to continue the same random number sequence. */
 | |
| /* >           Changed on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is COMPLEX array, dimension ( N ) */
 | |
| /* >           This array is used to specify the eigenvalues of A.  If */
 | |
| /* >           MODE=0, then D is assumed to contain the eigenvalues */
 | |
| /* >           otherwise they will be computed according to MODE, COND, */
 | |
| /* >           DMAX, and RSIGN and placed in D. */
 | |
| /* >           Modified if MODE is nonzero. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MODE */
 | |
| /* > \verbatim */
 | |
| /* >          MODE is INTEGER */
 | |
| /* >           On entry this describes how the eigenvalues are to */
 | |
| /* >           be specified: */
 | |
| /* >           MODE = 0 means use D as input */
 | |
| /* >           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
 | |
| /* >           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
 | |
| /* >           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
 | |
| /* >           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
 | |
| /* >           MODE = 5 sets D to random numbers in the range */
 | |
| /* >                    ( 1/COND , 1 ) such that their logarithms */
 | |
| /* >                    are uniformly distributed. */
 | |
| /* >           MODE = 6 set D to random numbers from same distribution */
 | |
| /* >                    as the rest of the matrix. */
 | |
| /* >           MODE < 0 has the same meaning as ABS(MODE), except that */
 | |
| /* >              the order of the elements of D is reversed. */
 | |
| /* >           Thus if MODE is between 1 and 4, D has entries ranging */
 | |
| /* >              from 1 to 1/COND, if between -1 and -4, D has entries */
 | |
| /* >              ranging from 1/COND to 1, */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COND */
 | |
| /* > \verbatim */
 | |
| /* >          COND is REAL */
 | |
| /* >           On entry, this is used as described under MODE above. */
 | |
| /* >           If used, it must be >= 1. Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DMAX */
 | |
| /* > \verbatim */
 | |
| /* >          DMAX is COMPLEX */
 | |
| /* >           If MODE is neither -6, 0 nor 6, the contents of D, as */
 | |
| /* >           computed according to MODE and COND, will be scaled by */
 | |
| /* >           DMAX / f2cmax(abs(D(i))).  Note that DMAX need not be */
 | |
| /* >           positive or real: if DMAX is negative or complex (or zero), */
 | |
| /* >           D will be scaled by a negative or complex number (or zero). */
 | |
| /* >           If RSIGN='F' then the largest (absolute) eigenvalue will be */
 | |
| /* >           equal to DMAX. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RSIGN */
 | |
| /* > \verbatim */
 | |
| /* >          RSIGN is CHARACTER*1 */
 | |
| /* >           If MODE is not 0, 6, or -6, and RSIGN='T', then the */
 | |
| /* >           elements of D, as computed according to MODE and COND, will */
 | |
| /* >           be multiplied by a random complex number from the unit */
 | |
| /* >           circle |z| = 1.  If RSIGN='F', they will not be.  RSIGN may */
 | |
| /* >           only have the values 'T' or 'F'. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] UPPER */
 | |
| /* > \verbatim */
 | |
| /* >          UPPER is CHARACTER*1 */
 | |
| /* >           If UPPER='T', then the elements of A above the diagonal */
 | |
| /* >           will be set to random numbers out of DIST.  If UPPER='F', */
 | |
| /* >           they will not.  UPPER may only have the values 'T' or 'F'. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SIM */
 | |
| /* > \verbatim */
 | |
| /* >          SIM is CHARACTER*1 */
 | |
| /* >           If SIM='T', then A will be operated on by a "similarity */
 | |
| /* >           transform", i.e., multiplied on the left by a matrix X and */
 | |
| /* >           on the right by X inverse.  X = U S V, where U and V are */
 | |
| /* >           random unitary matrices and S is a (diagonal) matrix of */
 | |
| /* >           singular values specified by DS, MODES, and CONDS.  If */
 | |
| /* >           SIM='F', then A will not be transformed. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DS */
 | |
| /* > \verbatim */
 | |
| /* >          DS is REAL array, dimension ( N ) */
 | |
| /* >           This array is used to specify the singular values of X, */
 | |
| /* >           in the same way that D specifies the eigenvalues of A. */
 | |
| /* >           If MODE=0, the DS contains the singular values, which */
 | |
| /* >           may not be zero. */
 | |
| /* >           Modified if MODE is nonzero. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MODES */
 | |
| /* > \verbatim */
 | |
| /* >          MODES is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CONDS */
 | |
| /* > \verbatim */
 | |
| /* >          CONDS is REAL */
 | |
| /* >           Similar to MODE and COND, but for specifying the diagonal */
 | |
| /* >           of S.  MODES=-6 and +6 are not allowed (since they would */
 | |
| /* >           result in randomly ill-conditioned eigenvalues.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KL */
 | |
| /* > \verbatim */
 | |
| /* >          KL is INTEGER */
 | |
| /* >           This specifies the lower bandwidth of the  matrix.  KL=1 */
 | |
| /* >           specifies upper Hessenberg form.  If KL is at least N-1, */
 | |
| /* >           then A will have full lower bandwidth. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KU */
 | |
| /* > \verbatim */
 | |
| /* >          KU is INTEGER */
 | |
| /* >           This specifies the upper bandwidth of the  matrix.  KU=1 */
 | |
| /* >           specifies lower Hessenberg form.  If KU is at least N-1, */
 | |
| /* >           then A will have full upper bandwidth; if KU and KL */
 | |
| /* >           are both at least N-1, then A will be dense.  Only one of */
 | |
| /* >           KU and KL may be less than N-1. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ANORM */
 | |
| /* > \verbatim */
 | |
| /* >          ANORM is REAL */
 | |
| /* >           If ANORM is not negative, then A will be scaled by a non- */
 | |
| /* >           negative real number to make the maximum-element-norm of A */
 | |
| /* >           to be ANORM. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension ( LDA, N ) */
 | |
| /* >           On exit A is the desired test matrix. */
 | |
| /* >           Modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >           LDA specifies the first dimension of A as declared in the */
 | |
| /* >           calling program.  LDA must be at least M. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension ( 3*N ) */
 | |
| /* >           Workspace. */
 | |
| /* >           Modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >           Error code.  On exit, INFO will be set to one of the */
 | |
| /* >           following values: */
 | |
| /* >             0 => normal return */
 | |
| /* >            -1 => N negative */
 | |
| /* >            -2 => DIST illegal string */
 | |
| /* >            -5 => MODE not in range -6 to 6 */
 | |
| /* >            -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
 | |
| /* >            -9 => RSIGN is not 'T' or 'F' */
 | |
| /* >           -10 => UPPER is not 'T' or 'F' */
 | |
| /* >           -11 => SIM   is not 'T' or 'F' */
 | |
| /* >           -12 => MODES=0 and DS has a zero singular value. */
 | |
| /* >           -13 => MODES is not in the range -5 to 5. */
 | |
| /* >           -14 => MODES is nonzero and CONDS is less than 1. */
 | |
| /* >           -15 => KL is less than 1. */
 | |
| /* >           -16 => KU is less than 1, or KL and KU are both less than */
 | |
| /* >                  N-1. */
 | |
| /* >           -19 => LDA is less than M. */
 | |
| /* >            1  => Error return from CLATM1 (computing D) */
 | |
| /* >            2  => Cannot scale to DMAX (f2cmax. eigenvalue is 0) */
 | |
| /* >            3  => Error return from SLATM1 (computing DS) */
 | |
| /* >            4  => Error return from CLARGE */
 | |
| /* >            5  => Zero singular value from SLATM1. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex_matgen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void clatme_(integer *n, char *dist, integer *iseed, complex *
 | |
| 	d__, integer *mode, real *cond, complex *dmax__, char *rsign, char *
 | |
| 	upper, char *sim, real *ds, integer *modes, real *conds, integer *kl, 
 | |
| 	integer *ku, real *anorm, complex *a, integer *lda, complex *work, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2;
 | |
|     real r__1, r__2;
 | |
|     complex q__1, q__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     logical bads;
 | |
|     integer isim;
 | |
|     real temp;
 | |
|     integer i__, j;
 | |
|     extern /* Subroutine */ void cgerc_(integer *, integer *, complex *, 
 | |
| 	    complex *, integer *, complex *, integer *, complex *, integer *);
 | |
|     complex alpha;
 | |
|     extern /* Subroutine */ void cscal_(integer *, complex *, complex *, 
 | |
| 	    integer *);
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
 | |
| 	    , complex *, integer *, complex *, integer *, complex *, complex *
 | |
| 	    , integer *);
 | |
|     integer iinfo;
 | |
|     real tempa[1];
 | |
|     integer icols, idist;
 | |
|     extern /* Subroutine */ void ccopy_(integer *, complex *, integer *, 
 | |
| 	    complex *, integer *);
 | |
|     integer irows;
 | |
|     extern /* Subroutine */ void clatm1_(integer *, real *, integer *, integer 
 | |
| 	    *, integer *, complex *, integer *, integer *), slatm1_(integer *,
 | |
| 	     real *, integer *, integer *, integer *, real *, integer *, 
 | |
| 	    integer *);
 | |
|     integer ic, jc;
 | |
|     extern real clange_(char *, integer *, integer *, complex *, integer *, 
 | |
| 	    real *);
 | |
|     integer ir;
 | |
|     extern /* Subroutine */ void clarge_(integer *, complex *, integer *, 
 | |
| 	    integer *, complex *, integer *), clarfg_(integer *, complex *, 
 | |
| 	    complex *, integer *, complex *), clacgv_(integer *, complex *, 
 | |
| 	    integer *);
 | |
|     //extern /* Complex */ VOID clarnd_(complex *, integer *, integer *);
 | |
|     extern complex clarnd_(integer *, integer *);
 | |
|     real ralpha;
 | |
|     extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer 
 | |
| 	    *), claset_(char *, integer *, integer *, complex *, complex *, 
 | |
| 	    complex *, integer *);
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void clarnv_(integer *, integer *, integer *, complex *);
 | |
|     integer irsign, iupper;
 | |
|     complex xnorms;
 | |
|     integer jcr;
 | |
|     complex tau;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     1)      Decode and Test the input parameters. */
 | |
| /*             Initialize flags & seed. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --iseed;
 | |
|     --d__;
 | |
|     --ds;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Decode DIST */
 | |
| 
 | |
|     if (lsame_(dist, "U")) {
 | |
| 	idist = 1;
 | |
|     } else if (lsame_(dist, "S")) {
 | |
| 	idist = 2;
 | |
|     } else if (lsame_(dist, "N")) {
 | |
| 	idist = 3;
 | |
|     } else if (lsame_(dist, "D")) {
 | |
| 	idist = 4;
 | |
|     } else {
 | |
| 	idist = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode RSIGN */
 | |
| 
 | |
|     if (lsame_(rsign, "T")) {
 | |
| 	irsign = 1;
 | |
|     } else if (lsame_(rsign, "F")) {
 | |
| 	irsign = 0;
 | |
|     } else {
 | |
| 	irsign = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode UPPER */
 | |
| 
 | |
|     if (lsame_(upper, "T")) {
 | |
| 	iupper = 1;
 | |
|     } else if (lsame_(upper, "F")) {
 | |
| 	iupper = 0;
 | |
|     } else {
 | |
| 	iupper = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode SIM */
 | |
| 
 | |
|     if (lsame_(sim, "T")) {
 | |
| 	isim = 1;
 | |
|     } else if (lsame_(sim, "F")) {
 | |
| 	isim = 0;
 | |
|     } else {
 | |
| 	isim = -1;
 | |
|     }
 | |
| 
 | |
| /*     Check DS, if MODES=0 and ISIM=1 */
 | |
| 
 | |
|     bads = FALSE_;
 | |
|     if (*modes == 0 && isim == 1) {
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    if (ds[j] == 0.f) {
 | |
| 		bads = TRUE_;
 | |
| 	    }
 | |
| /* L10: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Set INFO if an error */
 | |
| 
 | |
|     if (*n < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (idist == -1) {
 | |
| 	*info = -2;
 | |
|     } else if (abs(*mode) > 6) {
 | |
| 	*info = -5;
 | |
|     } else if (*mode != 0 && abs(*mode) != 6 && *cond < 1.f) {
 | |
| 	*info = -6;
 | |
|     } else if (irsign == -1) {
 | |
| 	*info = -9;
 | |
|     } else if (iupper == -1) {
 | |
| 	*info = -10;
 | |
|     } else if (isim == -1) {
 | |
| 	*info = -11;
 | |
|     } else if (bads) {
 | |
| 	*info = -12;
 | |
|     } else if (isim == 1 && abs(*modes) > 5) {
 | |
| 	*info = -13;
 | |
|     } else if (isim == 1 && *modes != 0 && *conds < 1.f) {
 | |
| 	*info = -14;
 | |
|     } else if (*kl < 1) {
 | |
| 	*info = -15;
 | |
|     } else if (*ku < 1 || *ku < *n - 1 && *kl < *n - 1) {
 | |
| 	*info = -16;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -19;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CLATME", &i__1, 6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize random number generator */
 | |
| 
 | |
|     for (i__ = 1; i__ <= 4; ++i__) {
 | |
| 	iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
|     if (iseed[4] % 2 != 1) {
 | |
| 	++iseed[4];
 | |
|     }
 | |
| 
 | |
| /*     2)      Set up diagonal of A */
 | |
| 
 | |
| /*             Compute D according to COND and MODE */
 | |
| 
 | |
|     clatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], n, &iinfo);
 | |
|     if (iinfo != 0) {
 | |
| 	*info = 1;
 | |
| 	return;
 | |
|     }
 | |
|     if (*mode != 0 && abs(*mode) != 6) {
 | |
| 
 | |
| /*        Scale by DMAX */
 | |
| 
 | |
| 	temp = c_abs(&d__[1]);
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| /* Computing MAX */
 | |
| 	    r__1 = temp, r__2 = c_abs(&d__[i__]);
 | |
| 	    temp = f2cmax(r__1,r__2);
 | |
| /* L30: */
 | |
| 	}
 | |
| 
 | |
| 	if (temp > 0.f) {
 | |
| 	    q__1.r = dmax__->r / temp, q__1.i = dmax__->i / temp;
 | |
| 	    alpha.r = q__1.r, alpha.i = q__1.i;
 | |
| 	} else {
 | |
| 	    *info = 2;
 | |
| 	    return;
 | |
| 	}
 | |
| 
 | |
| 	cscal_(n, &alpha, &d__[1], &c__1);
 | |
| 
 | |
|     }
 | |
| 
 | |
|     claset_("Full", n, n, &c_b1, &c_b1, &a[a_offset], lda);
 | |
|     i__1 = *lda + 1;
 | |
|     ccopy_(n, &d__[1], &c__1, &a[a_offset], &i__1);
 | |
| 
 | |
| /*     3)      If UPPER='T', set upper triangle of A to random numbers. */
 | |
| 
 | |
|     if (iupper != 0) {
 | |
| 	i__1 = *n;
 | |
| 	for (jc = 2; jc <= i__1; ++jc) {
 | |
| 	    i__2 = jc - 1;
 | |
| 	    clarnv_(&idist, &iseed[1], &i__2, &a[jc * a_dim1 + 1]);
 | |
| /* L40: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     4)      If SIM='T', apply similarity transformation. */
 | |
| 
 | |
| /*                                -1 */
 | |
| /*             Transform is  X A X  , where X = U S V, thus */
 | |
| 
 | |
| /*             it is  U S V A V' (1/S) U' */
 | |
| 
 | |
|     if (isim != 0) {
 | |
| 
 | |
| /*        Compute S (singular values of the eigenvector matrix) */
 | |
| /*        according to CONDS and MODES */
 | |
| 
 | |
| 	slatm1_(modes, conds, &c__0, &c__0, &iseed[1], &ds[1], n, &iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = 3;
 | |
| 	    return;
 | |
| 	}
 | |
| 
 | |
| /*        Multiply by V and V' */
 | |
| 
 | |
| 	clarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = 4;
 | |
| 	    return;
 | |
| 	}
 | |
| 
 | |
| /*        Multiply by S and (1/S) */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    csscal_(n, &ds[j], &a[j + a_dim1], lda);
 | |
| 	    if (ds[j] != 0.f) {
 | |
| 		r__1 = 1.f / ds[j];
 | |
| 		csscal_(n, &r__1, &a[j * a_dim1 + 1], &c__1);
 | |
| 	    } else {
 | |
| 		*info = 5;
 | |
| 		return;
 | |
| 	    }
 | |
| /* L50: */
 | |
| 	}
 | |
| 
 | |
| /*        Multiply by U and U' */
 | |
| 
 | |
| 	clarge_(n, &a[a_offset], lda, &iseed[1], &work[1], &iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = 4;
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     5)      Reduce the bandwidth. */
 | |
| 
 | |
|     if (*kl < *n - 1) {
 | |
| 
 | |
| /*        Reduce bandwidth -- kill column */
 | |
| 
 | |
| 	i__1 = *n - 1;
 | |
| 	for (jcr = *kl + 1; jcr <= i__1; ++jcr) {
 | |
| 	    ic = jcr - *kl;
 | |
| 	    irows = *n + 1 - jcr;
 | |
| 	    icols = *n + *kl - jcr;
 | |
| 
 | |
| 	    ccopy_(&irows, &a[jcr + ic * a_dim1], &c__1, &work[1], &c__1);
 | |
| 	    xnorms.r = work[1].r, xnorms.i = work[1].i;
 | |
| 	    clarfg_(&irows, &xnorms, &work[2], &c__1, &tau);
 | |
| 	    r_cnjg(&q__1, &tau);
 | |
| 	    tau.r = q__1.r, tau.i = q__1.i;
 | |
| 	    work[1].r = 1.f, work[1].i = 0.f;
 | |
| 	    //clarnd_(&q__1, &c__5, &iseed[1]);
 | |
| 	    q__1=clarnd_(&c__5, &iseed[1]);
 | |
| 	    alpha.r = q__1.r, alpha.i = q__1.i;
 | |
| 
 | |
| 	    cgemv_("C", &irows, &icols, &c_b2, &a[jcr + (ic + 1) * a_dim1], 
 | |
| 		    lda, &work[1], &c__1, &c_b1, &work[irows + 1], &c__1);
 | |
| 	    q__1.r = -tau.r, q__1.i = -tau.i;
 | |
| 	    cgerc_(&irows, &icols, &q__1, &work[1], &c__1, &work[irows + 1], &
 | |
| 		    c__1, &a[jcr + (ic + 1) * a_dim1], lda);
 | |
| 
 | |
| 	    cgemv_("N", n, &irows, &c_b2, &a[jcr * a_dim1 + 1], lda, &work[1],
 | |
| 		     &c__1, &c_b1, &work[irows + 1], &c__1);
 | |
| 	    r_cnjg(&q__2, &tau);
 | |
| 	    q__1.r = -q__2.r, q__1.i = -q__2.i;
 | |
| 	    cgerc_(n, &irows, &q__1, &work[irows + 1], &c__1, &work[1], &c__1,
 | |
| 		     &a[jcr * a_dim1 + 1], lda);
 | |
| 
 | |
| 	    i__2 = jcr + ic * a_dim1;
 | |
| 	    a[i__2].r = xnorms.r, a[i__2].i = xnorms.i;
 | |
| 	    i__2 = irows - 1;
 | |
| 	    claset_("Full", &i__2, &c__1, &c_b1, &c_b1, &a[jcr + 1 + ic * 
 | |
| 		    a_dim1], lda);
 | |
| 
 | |
| 	    i__2 = icols + 1;
 | |
| 	    cscal_(&i__2, &alpha, &a[jcr + ic * a_dim1], lda);
 | |
| 	    r_cnjg(&q__1, &alpha);
 | |
| 	    cscal_(n, &q__1, &a[jcr * a_dim1 + 1], &c__1);
 | |
| /* L60: */
 | |
| 	}
 | |
|     } else if (*ku < *n - 1) {
 | |
| 
 | |
| /*        Reduce upper bandwidth -- kill a row at a time. */
 | |
| 
 | |
| 	i__1 = *n - 1;
 | |
| 	for (jcr = *ku + 1; jcr <= i__1; ++jcr) {
 | |
| 	    ir = jcr - *ku;
 | |
| 	    irows = *n + *ku - jcr;
 | |
| 	    icols = *n + 1 - jcr;
 | |
| 
 | |
| 	    ccopy_(&icols, &a[ir + jcr * a_dim1], lda, &work[1], &c__1);
 | |
| 	    xnorms.r = work[1].r, xnorms.i = work[1].i;
 | |
| 	    clarfg_(&icols, &xnorms, &work[2], &c__1, &tau);
 | |
| 	    r_cnjg(&q__1, &tau);
 | |
| 	    tau.r = q__1.r, tau.i = q__1.i;
 | |
| 	    work[1].r = 1.f, work[1].i = 0.f;
 | |
| 	    i__2 = icols - 1;
 | |
| 	    clacgv_(&i__2, &work[2], &c__1);
 | |
| 	    //clarnd_(&q__1, &c__5, &iseed[1]);
 | |
| 	    q__1=clarnd_(&c__5, &iseed[1]);
 | |
| 	    alpha.r = q__1.r, alpha.i = q__1.i;
 | |
| 
 | |
| 	    cgemv_("N", &irows, &icols, &c_b2, &a[ir + 1 + jcr * a_dim1], lda,
 | |
| 		     &work[1], &c__1, &c_b1, &work[icols + 1], &c__1);
 | |
| 	    q__1.r = -tau.r, q__1.i = -tau.i;
 | |
| 	    cgerc_(&irows, &icols, &q__1, &work[icols + 1], &c__1, &work[1], &
 | |
| 		    c__1, &a[ir + 1 + jcr * a_dim1], lda);
 | |
| 
 | |
| 	    cgemv_("C", &icols, n, &c_b2, &a[jcr + a_dim1], lda, &work[1], &
 | |
| 		    c__1, &c_b1, &work[icols + 1], &c__1);
 | |
| 	    r_cnjg(&q__2, &tau);
 | |
| 	    q__1.r = -q__2.r, q__1.i = -q__2.i;
 | |
| 	    cgerc_(&icols, n, &q__1, &work[1], &c__1, &work[icols + 1], &c__1,
 | |
| 		     &a[jcr + a_dim1], lda);
 | |
| 
 | |
| 	    i__2 = ir + jcr * a_dim1;
 | |
| 	    a[i__2].r = xnorms.r, a[i__2].i = xnorms.i;
 | |
| 	    i__2 = icols - 1;
 | |
| 	    claset_("Full", &c__1, &i__2, &c_b1, &c_b1, &a[ir + (jcr + 1) * 
 | |
| 		    a_dim1], lda);
 | |
| 
 | |
| 	    i__2 = irows + 1;
 | |
| 	    cscal_(&i__2, &alpha, &a[ir + jcr * a_dim1], &c__1);
 | |
| 	    r_cnjg(&q__1, &alpha);
 | |
| 	    cscal_(n, &q__1, &a[jcr + a_dim1], lda);
 | |
| /* L70: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Scale the matrix to have norm ANORM */
 | |
| 
 | |
|     if (*anorm >= 0.f) {
 | |
| 	temp = clange_("M", n, n, &a[a_offset], lda, tempa);
 | |
| 	if (temp > 0.f) {
 | |
| 	    ralpha = *anorm / temp;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		csscal_(n, &ralpha, &a[j * a_dim1 + 1], &c__1);
 | |
| /* L80: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of CLATME */
 | |
| 
 | |
| } /* clatme_ */
 | |
| 
 |