786 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			786 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static complex c_b1 = {0.f,0.f};
 | |
| static complex c_b2 = {1.f,0.f};
 | |
| static integer c__3 = 3;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b CLAGGE */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE CLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, KL, KU, LDA, M, N */
 | |
| /*       INTEGER            ISEED( 4 ) */
 | |
| /*       REAL               D( * ) */
 | |
| /*       COMPLEX            A( LDA, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > CLAGGE generates a complex general m by n matrix A, by pre- and post- */
 | |
| /* > multiplying a real diagonal matrix D with random unitary matrices: */
 | |
| /* > A = U*D*V. The lower and upper bandwidths may then be reduced to */
 | |
| /* > kl and ku by additional unitary transformations. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KL */
 | |
| /* > \verbatim */
 | |
| /* >          KL is INTEGER */
 | |
| /* >          The number of nonzero subdiagonals within the band of A. */
 | |
| /* >          0 <= KL <= M-1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KU */
 | |
| /* > \verbatim */
 | |
| /* >          KU is INTEGER */
 | |
| /* >          The number of nonzero superdiagonals within the band of A. */
 | |
| /* >          0 <= KU <= N-1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (f2cmin(M,N)) */
 | |
| /* >          The diagonal elements of the diagonal matrix D. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX array, dimension (LDA,N) */
 | |
| /* >          The generated m by n matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] ISEED */
 | |
| /* > \verbatim */
 | |
| /* >          ISEED is INTEGER array, dimension (4) */
 | |
| /* >          On entry, the seed of the random number generator; the array */
 | |
| /* >          elements must be between 0 and 4095, and ISEED(4) must be */
 | |
| /* >          odd. */
 | |
| /* >          On exit, the seed is updated. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX array, dimension (M+N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex_matgen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void clagge_(integer *m, integer *n, integer *kl, integer *ku,
 | |
| 	 real *d__, complex *a, integer *lda, integer *iseed, complex *work, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2, i__3;
 | |
|     real r__1;
 | |
|     complex q__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, j;
 | |
|     extern /* Subroutine */ void cgerc_(integer *, integer *, complex *, 
 | |
| 	    complex *, integer *, complex *, integer *, complex *, integer *),
 | |
| 	     cscal_(integer *, complex *, complex *, integer *), cgemv_(char *
 | |
| 	    , integer *, integer *, complex *, complex *, integer *, complex *
 | |
| 	    , integer *, complex *, complex *, integer *);
 | |
|     extern real scnrm2_(integer *, complex *, integer *);
 | |
|     complex wa, wb;
 | |
|     extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
 | |
|     real wn;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void clarnv_(
 | |
| 	    integer *, integer *, integer *, complex *);
 | |
|     complex tau;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --iseed;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     if (*m < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*kl < 0 || *kl > *m - 1) {
 | |
| 	*info = -3;
 | |
|     } else if (*ku < 0 || *ku > *n - 1) {
 | |
| 	*info = -4;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -7;
 | |
|     }
 | |
|     if (*info < 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("CLAGGE", &i__1, 6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     initialize A to diagonal matrix */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	i__2 = *m;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    i__3 = i__ + j * a_dim1;
 | |
| 	    a[i__3].r = 0.f, a[i__3].i = 0.f;
 | |
| /* L10: */
 | |
| 	}
 | |
| /* L20: */
 | |
|     }
 | |
|     i__1 = f2cmin(*m,*n);
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	i__2 = i__ + i__ * a_dim1;
 | |
| 	i__3 = i__;
 | |
| 	a[i__2].r = d__[i__3], a[i__2].i = 0.f;
 | |
| /* L30: */
 | |
|     }
 | |
| 
 | |
| /*     Quick exit if the user wants a diagonal matrix */
 | |
| 
 | |
|     if (*kl == 0 && *ku == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     pre- and post-multiply A by random unitary matrices */
 | |
| 
 | |
|     for (i__ = f2cmin(*m,*n); i__ >= 1; --i__) {
 | |
| 	if (i__ < *m) {
 | |
| 
 | |
| /*           generate random reflection */
 | |
| 
 | |
| 	    i__1 = *m - i__ + 1;
 | |
| 	    clarnv_(&c__3, &iseed[1], &i__1, &work[1]);
 | |
| 	    i__1 = *m - i__ + 1;
 | |
| 	    wn = scnrm2_(&i__1, &work[1], &c__1);
 | |
| 	    r__1 = wn / c_abs(&work[1]);
 | |
| 	    q__1.r = r__1 * work[1].r, q__1.i = r__1 * work[1].i;
 | |
| 	    wa.r = q__1.r, wa.i = q__1.i;
 | |
| 	    if (wn == 0.f) {
 | |
| 		tau.r = 0.f, tau.i = 0.f;
 | |
| 	    } else {
 | |
| 		q__1.r = work[1].r + wa.r, q__1.i = work[1].i + wa.i;
 | |
| 		wb.r = q__1.r, wb.i = q__1.i;
 | |
| 		i__1 = *m - i__;
 | |
| 		c_div(&q__1, &c_b2, &wb);
 | |
| 		cscal_(&i__1, &q__1, &work[2], &c__1);
 | |
| 		work[1].r = 1.f, work[1].i = 0.f;
 | |
| 		c_div(&q__1, &wb, &wa);
 | |
| 		r__1 = q__1.r;
 | |
| 		tau.r = r__1, tau.i = 0.f;
 | |
| 	    }
 | |
| 
 | |
| /*           multiply A(i:m,i:n) by random reflection from the left */
 | |
| 
 | |
| 	    i__1 = *m - i__ + 1;
 | |
| 	    i__2 = *n - i__ + 1;
 | |
| 	    cgemv_("Conjugate transpose", &i__1, &i__2, &c_b2, &a[i__ + i__ * 
 | |
| 		    a_dim1], lda, &work[1], &c__1, &c_b1, &work[*m + 1], &
 | |
| 		    c__1);
 | |
| 	    i__1 = *m - i__ + 1;
 | |
| 	    i__2 = *n - i__ + 1;
 | |
| 	    q__1.r = -tau.r, q__1.i = -tau.i;
 | |
| 	    cgerc_(&i__1, &i__2, &q__1, &work[1], &c__1, &work[*m + 1], &c__1,
 | |
| 		     &a[i__ + i__ * a_dim1], lda);
 | |
| 	}
 | |
| 	if (i__ < *n) {
 | |
| 
 | |
| /*           generate random reflection */
 | |
| 
 | |
| 	    i__1 = *n - i__ + 1;
 | |
| 	    clarnv_(&c__3, &iseed[1], &i__1, &work[1]);
 | |
| 	    i__1 = *n - i__ + 1;
 | |
| 	    wn = scnrm2_(&i__1, &work[1], &c__1);
 | |
| 	    r__1 = wn / c_abs(&work[1]);
 | |
| 	    q__1.r = r__1 * work[1].r, q__1.i = r__1 * work[1].i;
 | |
| 	    wa.r = q__1.r, wa.i = q__1.i;
 | |
| 	    if (wn == 0.f) {
 | |
| 		tau.r = 0.f, tau.i = 0.f;
 | |
| 	    } else {
 | |
| 		q__1.r = work[1].r + wa.r, q__1.i = work[1].i + wa.i;
 | |
| 		wb.r = q__1.r, wb.i = q__1.i;
 | |
| 		i__1 = *n - i__;
 | |
| 		c_div(&q__1, &c_b2, &wb);
 | |
| 		cscal_(&i__1, &q__1, &work[2], &c__1);
 | |
| 		work[1].r = 1.f, work[1].i = 0.f;
 | |
| 		c_div(&q__1, &wb, &wa);
 | |
| 		r__1 = q__1.r;
 | |
| 		tau.r = r__1, tau.i = 0.f;
 | |
| 	    }
 | |
| 
 | |
| /*           multiply A(i:m,i:n) by random reflection from the right */
 | |
| 
 | |
| 	    i__1 = *m - i__ + 1;
 | |
| 	    i__2 = *n - i__ + 1;
 | |
| 	    cgemv_("No transpose", &i__1, &i__2, &c_b2, &a[i__ + i__ * a_dim1]
 | |
| 		    , lda, &work[1], &c__1, &c_b1, &work[*n + 1], &c__1);
 | |
| 	    i__1 = *m - i__ + 1;
 | |
| 	    i__2 = *n - i__ + 1;
 | |
| 	    q__1.r = -tau.r, q__1.i = -tau.i;
 | |
| 	    cgerc_(&i__1, &i__2, &q__1, &work[*n + 1], &c__1, &work[1], &c__1,
 | |
| 		     &a[i__ + i__ * a_dim1], lda);
 | |
| 	}
 | |
| /* L40: */
 | |
|     }
 | |
| 
 | |
| /*     Reduce number of subdiagonals to KL and number of superdiagonals */
 | |
| /*     to KU */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     i__2 = *m - 1 - *kl, i__3 = *n - 1 - *ku;
 | |
|     i__1 = f2cmax(i__2,i__3);
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	if (*kl <= *ku) {
 | |
| 
 | |
| /*           annihilate subdiagonal elements first (necessary if KL = 0) */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__2 = *m - 1 - *kl;
 | |
| 	    if (i__ <= f2cmin(i__2,*n)) {
 | |
| 
 | |
| /*              generate reflection to annihilate A(kl+i+1:m,i) */
 | |
| 
 | |
| 		i__2 = *m - *kl - i__ + 1;
 | |
| 		wn = scnrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1);
 | |
| 		r__1 = wn / c_abs(&a[*kl + i__ + i__ * a_dim1]);
 | |
| 		i__2 = *kl + i__ + i__ * a_dim1;
 | |
| 		q__1.r = r__1 * a[i__2].r, q__1.i = r__1 * a[i__2].i;
 | |
| 		wa.r = q__1.r, wa.i = q__1.i;
 | |
| 		if (wn == 0.f) {
 | |
| 		    tau.r = 0.f, tau.i = 0.f;
 | |
| 		} else {
 | |
| 		    i__2 = *kl + i__ + i__ * a_dim1;
 | |
| 		    q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;
 | |
| 		    wb.r = q__1.r, wb.i = q__1.i;
 | |
| 		    i__2 = *m - *kl - i__;
 | |
| 		    c_div(&q__1, &c_b2, &wb);
 | |
| 		    cscal_(&i__2, &q__1, &a[*kl + i__ + 1 + i__ * a_dim1], &
 | |
| 			    c__1);
 | |
| 		    i__2 = *kl + i__ + i__ * a_dim1;
 | |
| 		    a[i__2].r = 1.f, a[i__2].i = 0.f;
 | |
| 		    c_div(&q__1, &wb, &wa);
 | |
| 		    r__1 = q__1.r;
 | |
| 		    tau.r = r__1, tau.i = 0.f;
 | |
| 		}
 | |
| 
 | |
| /*              apply reflection to A(kl+i:m,i+1:n) from the left */
 | |
| 
 | |
| 		i__2 = *m - *kl - i__ + 1;
 | |
| 		i__3 = *n - i__;
 | |
| 		cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl + 
 | |
| 			i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ * 
 | |
| 			a_dim1], &c__1, &c_b1, &work[1], &c__1);
 | |
| 		i__2 = *m - *kl - i__ + 1;
 | |
| 		i__3 = *n - i__;
 | |
| 		q__1.r = -tau.r, q__1.i = -tau.i;
 | |
| 		cgerc_(&i__2, &i__3, &q__1, &a[*kl + i__ + i__ * a_dim1], &
 | |
| 			c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) * 
 | |
| 			a_dim1], lda);
 | |
| 		i__2 = *kl + i__ + i__ * a_dim1;
 | |
| 		q__1.r = -wa.r, q__1.i = -wa.i;
 | |
| 		a[i__2].r = q__1.r, a[i__2].i = q__1.i;
 | |
| 	    }
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__2 = *n - 1 - *ku;
 | |
| 	    if (i__ <= f2cmin(i__2,*m)) {
 | |
| 
 | |
| /*              generate reflection to annihilate A(i,ku+i+1:n) */
 | |
| 
 | |
| 		i__2 = *n - *ku - i__ + 1;
 | |
| 		wn = scnrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
 | |
| 		r__1 = wn / c_abs(&a[i__ + (*ku + i__) * a_dim1]);
 | |
| 		i__2 = i__ + (*ku + i__) * a_dim1;
 | |
| 		q__1.r = r__1 * a[i__2].r, q__1.i = r__1 * a[i__2].i;
 | |
| 		wa.r = q__1.r, wa.i = q__1.i;
 | |
| 		if (wn == 0.f) {
 | |
| 		    tau.r = 0.f, tau.i = 0.f;
 | |
| 		} else {
 | |
| 		    i__2 = i__ + (*ku + i__) * a_dim1;
 | |
| 		    q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;
 | |
| 		    wb.r = q__1.r, wb.i = q__1.i;
 | |
| 		    i__2 = *n - *ku - i__;
 | |
| 		    c_div(&q__1, &c_b2, &wb);
 | |
| 		    cscal_(&i__2, &q__1, &a[i__ + (*ku + i__ + 1) * a_dim1], 
 | |
| 			    lda);
 | |
| 		    i__2 = i__ + (*ku + i__) * a_dim1;
 | |
| 		    a[i__2].r = 1.f, a[i__2].i = 0.f;
 | |
| 		    c_div(&q__1, &wb, &wa);
 | |
| 		    r__1 = q__1.r;
 | |
| 		    tau.r = r__1, tau.i = 0.f;
 | |
| 		}
 | |
| 
 | |
| /*              apply reflection to A(i+1:m,ku+i:n) from the right */
 | |
| 
 | |
| 		i__2 = *n - *ku - i__ + 1;
 | |
| 		clacgv_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
 | |
| 		i__2 = *m - i__;
 | |
| 		i__3 = *n - *ku - i__ + 1;
 | |
| 		cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (*ku 
 | |
| 			+ i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1],
 | |
| 			 lda, &c_b1, &work[1], &c__1);
 | |
| 		i__2 = *m - i__;
 | |
| 		i__3 = *n - *ku - i__ + 1;
 | |
| 		q__1.r = -tau.r, q__1.i = -tau.i;
 | |
| 		cgerc_(&i__2, &i__3, &q__1, &work[1], &c__1, &a[i__ + (*ku + 
 | |
| 			i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) * 
 | |
| 			a_dim1], lda);
 | |
| 		i__2 = i__ + (*ku + i__) * a_dim1;
 | |
| 		q__1.r = -wa.r, q__1.i = -wa.i;
 | |
| 		a[i__2].r = q__1.r, a[i__2].i = q__1.i;
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           annihilate superdiagonal elements first (necessary if */
 | |
| /*           KU = 0) */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__2 = *n - 1 - *ku;
 | |
| 	    if (i__ <= f2cmin(i__2,*m)) {
 | |
| 
 | |
| /*              generate reflection to annihilate A(i,ku+i+1:n) */
 | |
| 
 | |
| 		i__2 = *n - *ku - i__ + 1;
 | |
| 		wn = scnrm2_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
 | |
| 		r__1 = wn / c_abs(&a[i__ + (*ku + i__) * a_dim1]);
 | |
| 		i__2 = i__ + (*ku + i__) * a_dim1;
 | |
| 		q__1.r = r__1 * a[i__2].r, q__1.i = r__1 * a[i__2].i;
 | |
| 		wa.r = q__1.r, wa.i = q__1.i;
 | |
| 		if (wn == 0.f) {
 | |
| 		    tau.r = 0.f, tau.i = 0.f;
 | |
| 		} else {
 | |
| 		    i__2 = i__ + (*ku + i__) * a_dim1;
 | |
| 		    q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;
 | |
| 		    wb.r = q__1.r, wb.i = q__1.i;
 | |
| 		    i__2 = *n - *ku - i__;
 | |
| 		    c_div(&q__1, &c_b2, &wb);
 | |
| 		    cscal_(&i__2, &q__1, &a[i__ + (*ku + i__ + 1) * a_dim1], 
 | |
| 			    lda);
 | |
| 		    i__2 = i__ + (*ku + i__) * a_dim1;
 | |
| 		    a[i__2].r = 1.f, a[i__2].i = 0.f;
 | |
| 		    c_div(&q__1, &wb, &wa);
 | |
| 		    r__1 = q__1.r;
 | |
| 		    tau.r = r__1, tau.i = 0.f;
 | |
| 		}
 | |
| 
 | |
| /*              apply reflection to A(i+1:m,ku+i:n) from the right */
 | |
| 
 | |
| 		i__2 = *n - *ku - i__ + 1;
 | |
| 		clacgv_(&i__2, &a[i__ + (*ku + i__) * a_dim1], lda);
 | |
| 		i__2 = *m - i__;
 | |
| 		i__3 = *n - *ku - i__ + 1;
 | |
| 		cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (*ku 
 | |
| 			+ i__) * a_dim1], lda, &a[i__ + (*ku + i__) * a_dim1],
 | |
| 			 lda, &c_b1, &work[1], &c__1);
 | |
| 		i__2 = *m - i__;
 | |
| 		i__3 = *n - *ku - i__ + 1;
 | |
| 		q__1.r = -tau.r, q__1.i = -tau.i;
 | |
| 		cgerc_(&i__2, &i__3, &q__1, &work[1], &c__1, &a[i__ + (*ku + 
 | |
| 			i__) * a_dim1], lda, &a[i__ + 1 + (*ku + i__) * 
 | |
| 			a_dim1], lda);
 | |
| 		i__2 = i__ + (*ku + i__) * a_dim1;
 | |
| 		q__1.r = -wa.r, q__1.i = -wa.i;
 | |
| 		a[i__2].r = q__1.r, a[i__2].i = q__1.i;
 | |
| 	    }
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__2 = *m - 1 - *kl;
 | |
| 	    if (i__ <= f2cmin(i__2,*n)) {
 | |
| 
 | |
| /*              generate reflection to annihilate A(kl+i+1:m,i) */
 | |
| 
 | |
| 		i__2 = *m - *kl - i__ + 1;
 | |
| 		wn = scnrm2_(&i__2, &a[*kl + i__ + i__ * a_dim1], &c__1);
 | |
| 		r__1 = wn / c_abs(&a[*kl + i__ + i__ * a_dim1]);
 | |
| 		i__2 = *kl + i__ + i__ * a_dim1;
 | |
| 		q__1.r = r__1 * a[i__2].r, q__1.i = r__1 * a[i__2].i;
 | |
| 		wa.r = q__1.r, wa.i = q__1.i;
 | |
| 		if (wn == 0.f) {
 | |
| 		    tau.r = 0.f, tau.i = 0.f;
 | |
| 		} else {
 | |
| 		    i__2 = *kl + i__ + i__ * a_dim1;
 | |
| 		    q__1.r = a[i__2].r + wa.r, q__1.i = a[i__2].i + wa.i;
 | |
| 		    wb.r = q__1.r, wb.i = q__1.i;
 | |
| 		    i__2 = *m - *kl - i__;
 | |
| 		    c_div(&q__1, &c_b2, &wb);
 | |
| 		    cscal_(&i__2, &q__1, &a[*kl + i__ + 1 + i__ * a_dim1], &
 | |
| 			    c__1);
 | |
| 		    i__2 = *kl + i__ + i__ * a_dim1;
 | |
| 		    a[i__2].r = 1.f, a[i__2].i = 0.f;
 | |
| 		    c_div(&q__1, &wb, &wa);
 | |
| 		    r__1 = q__1.r;
 | |
| 		    tau.r = r__1, tau.i = 0.f;
 | |
| 		}
 | |
| 
 | |
| /*              apply reflection to A(kl+i:m,i+1:n) from the left */
 | |
| 
 | |
| 		i__2 = *m - *kl - i__ + 1;
 | |
| 		i__3 = *n - i__;
 | |
| 		cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[*kl + 
 | |
| 			i__ + (i__ + 1) * a_dim1], lda, &a[*kl + i__ + i__ * 
 | |
| 			a_dim1], &c__1, &c_b1, &work[1], &c__1);
 | |
| 		i__2 = *m - *kl - i__ + 1;
 | |
| 		i__3 = *n - i__;
 | |
| 		q__1.r = -tau.r, q__1.i = -tau.i;
 | |
| 		cgerc_(&i__2, &i__3, &q__1, &a[*kl + i__ + i__ * a_dim1], &
 | |
| 			c__1, &work[1], &c__1, &a[*kl + i__ + (i__ + 1) * 
 | |
| 			a_dim1], lda);
 | |
| 		i__2 = *kl + i__ + i__ * a_dim1;
 | |
| 		q__1.r = -wa.r, q__1.i = -wa.i;
 | |
| 		a[i__2].r = q__1.r, a[i__2].i = q__1.i;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (i__ <= *n) {
 | |
| 	    i__2 = *m;
 | |
| 	    for (j = *kl + i__ + 1; j <= i__2; ++j) {
 | |
| 		i__3 = j + i__ * a_dim1;
 | |
| 		a[i__3].r = 0.f, a[i__3].i = 0.f;
 | |
| /* L50: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (i__ <= *m) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (j = *ku + i__ + 1; j <= i__2; ++j) {
 | |
| 		i__3 = i__ + j * a_dim1;
 | |
| 		a[i__3].r = 0.f, a[i__3].i = 0.f;
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	}
 | |
| /* L70: */
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| /*     End of CLAGGE */
 | |
| 
 | |
| } /* clagge_ */
 | |
| 
 |