2732 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2732 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {0.,0.};
 | |
| static doublecomplex c_b2 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZHBGST */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZHBGST + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgst.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgst.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgst.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
 | |
| /*                          LDX, WORK, RWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          UPLO, VECT */
 | |
| /*       INTEGER            INFO, KA, KB, LDAB, LDBB, LDX, N */
 | |
| /*       DOUBLE PRECISION   RWORK( * ) */
 | |
| /*       COMPLEX*16         AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
 | |
| /*      $                   X( LDX, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZHBGST reduces a complex Hermitian-definite banded generalized */
 | |
| /* > eigenproblem  A*x = lambda*B*x  to standard form  C*y = lambda*y, */
 | |
| /* > such that C has the same bandwidth as A. */
 | |
| /* > */
 | |
| /* > B must have been previously factorized as S**H*S by ZPBSTF, using a */
 | |
| /* > split Cholesky factorization. A is overwritten by C = X**H*A*X, where */
 | |
| /* > X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the */
 | |
| /* > bandwidth of A. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] VECT */
 | |
| /* > \verbatim */
 | |
| /* >          VECT is CHARACTER*1 */
 | |
| /* >          = 'N':  do not form the transformation matrix X; */
 | |
| /* >          = 'V':  form X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  Upper triangle of A is stored; */
 | |
| /* >          = 'L':  Lower triangle of A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices A and B.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KA */
 | |
| /* > \verbatim */
 | |
| /* >          KA is INTEGER */
 | |
| /* >          The number of superdiagonals of the matrix A if UPLO = 'U', */
 | |
| /* >          or the number of subdiagonals if UPLO = 'L'.  KA >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KB */
 | |
| /* > \verbatim */
 | |
| /* >          KB is INTEGER */
 | |
| /* >          The number of superdiagonals of the matrix B if UPLO = 'U', */
 | |
| /* >          or the number of subdiagonals if UPLO = 'L'.  KA >= KB >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] AB */
 | |
| /* > \verbatim */
 | |
| /* >          AB is COMPLEX*16 array, dimension (LDAB,N) */
 | |
| /* >          On entry, the upper or lower triangle of the Hermitian band */
 | |
| /* >          matrix A, stored in the first ka+1 rows of the array.  The */
 | |
| /* >          j-th column of A is stored in the j-th column of the array AB */
 | |
| /* >          as follows: */
 | |
| /* >          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
 | |
| /* >          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=f2cmin(n,j+ka). */
 | |
| /* > */
 | |
| /* >          On exit, the transformed matrix X**H*A*X, stored in the same */
 | |
| /* >          format as A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAB */
 | |
| /* > \verbatim */
 | |
| /* >          LDAB is INTEGER */
 | |
| /* >          The leading dimension of the array AB.  LDAB >= KA+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] BB */
 | |
| /* > \verbatim */
 | |
| /* >          BB is COMPLEX*16 array, dimension (LDBB,N) */
 | |
| /* >          The banded factor S from the split Cholesky factorization of */
 | |
| /* >          B, as returned by ZPBSTF, stored in the first kb+1 rows of */
 | |
| /* >          the array. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDBB */
 | |
| /* > \verbatim */
 | |
| /* >          LDBB is INTEGER */
 | |
| /* >          The leading dimension of the array BB.  LDBB >= KB+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is COMPLEX*16 array, dimension (LDX,N) */
 | |
| /* >          If VECT = 'V', the n-by-n matrix X. */
 | |
| /* >          If VECT = 'N', the array X is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >          The leading dimension of the array X. */
 | |
| /* >          LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zhbgst_(char *vect, char *uplo, integer *n, integer *ka, 
 | |
| 	integer *kb, doublecomplex *ab, integer *ldab, doublecomplex *bb, 
 | |
| 	integer *ldbb, doublecomplex *x, integer *ldx, doublecomplex *work, 
 | |
| 	doublereal *rwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1, 
 | |
| 	    i__2, i__3, i__4, i__5, i__6, i__7, i__8;
 | |
|     doublereal d__1;
 | |
|     doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8, z__9, z__10;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer inca;
 | |
|     extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublereal *, doublecomplex *);
 | |
|     integer i__, j, k, l, m;
 | |
|     doublecomplex t;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void zgerc_(integer *, integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     integer i0, i1;
 | |
|     logical upper;
 | |
|     integer i2, j1, j2;
 | |
|     extern /* Subroutine */ void zgeru_(integer *, integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     logical wantx;
 | |
|     extern /* Subroutine */ void zlar2v_(integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, doublecomplex *, integer *, doublereal *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     doublecomplex ra;
 | |
|     integer nr, nx;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void zdscal_(
 | |
| 	    integer *, doublereal *, doublecomplex *, integer *);
 | |
|     logical update;
 | |
|     extern /* Subroutine */ void zlacgv_(integer *, doublecomplex *, integer *)
 | |
| 	    ;
 | |
|     integer ka1, kb1;
 | |
|     extern /* Subroutine */ void zlaset_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *, 
 | |
| 	    doublecomplex *, doublecomplex *);
 | |
|     doublecomplex ra1;
 | |
|     extern /* Subroutine */ void zlargv_(integer *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *, doublereal *, integer *);
 | |
|     integer j1t, j2t;
 | |
|     extern /* Subroutine */ void zlartv_(integer *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *, doublereal *, doublecomplex *, 
 | |
| 	    integer *);
 | |
|     doublereal bii;
 | |
|     integer kbt, nrt;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     ab_dim1 = *ldab;
 | |
|     ab_offset = 1 + ab_dim1 * 1;
 | |
|     ab -= ab_offset;
 | |
|     bb_dim1 = *ldbb;
 | |
|     bb_offset = 1 + bb_dim1 * 1;
 | |
|     bb -= bb_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     --work;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     wantx = lsame_(vect, "V");
 | |
|     upper = lsame_(uplo, "U");
 | |
|     ka1 = *ka + 1;
 | |
|     kb1 = *kb + 1;
 | |
|     *info = 0;
 | |
|     if (! wantx && ! lsame_(vect, "N")) {
 | |
| 	*info = -1;
 | |
|     } else if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*ka < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*kb < 0 || *kb > *ka) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldab < *ka + 1) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldbb < *kb + 1) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
 | |
| 	*info = -11;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZHBGST", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     inca = *ldab * ka1;
 | |
| 
 | |
| /*     Initialize X to the unit matrix, if needed */
 | |
| 
 | |
|     if (wantx) {
 | |
| 	zlaset_("Full", n, n, &c_b1, &c_b2, &x[x_offset], ldx);
 | |
|     }
 | |
| 
 | |
| /*     Set M to the splitting point m. It must be the same value as is */
 | |
| /*     used in ZPBSTF. The chosen value allows the arrays WORK and RWORK */
 | |
| /*     to be of dimension (N). */
 | |
| 
 | |
|     m = (*n + *kb) / 2;
 | |
| 
 | |
| /*     The routine works in two phases, corresponding to the two halves */
 | |
| /*     of the split Cholesky factorization of B as S**H*S where */
 | |
| 
 | |
| /*     S = ( U    ) */
 | |
| /*         ( M  L ) */
 | |
| 
 | |
| /*     with U upper triangular of order m, and L lower triangular of */
 | |
| /*     order n-m. S has the same bandwidth as B. */
 | |
| 
 | |
| /*     S is treated as a product of elementary matrices: */
 | |
| 
 | |
| /*     S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
 | |
| 
 | |
| /*     where S(i) is determined by the i-th row of S. */
 | |
| 
 | |
| /*     In phase 1, the index i takes the values n, n-1, ... , m+1; */
 | |
| /*     in phase 2, it takes the values 1, 2, ... , m. */
 | |
| 
 | |
| /*     For each value of i, the current matrix A is updated by forming */
 | |
| /*     inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside */
 | |
| /*     the band of A. The bulge is then pushed down toward the bottom of */
 | |
| /*     A in phase 1, and up toward the top of A in phase 2, by applying */
 | |
| /*     plane rotations. */
 | |
| 
 | |
| /*     There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
 | |
| /*     of them are linearly independent, so annihilating a bulge requires */
 | |
| /*     only 2*kb-1 plane rotations. The rotations are divided into a 1st */
 | |
| /*     set of kb-1 rotations, and a 2nd set of kb rotations. */
 | |
| 
 | |
| /*     Wherever possible, rotations are generated and applied in vector */
 | |
| /*     operations of length NR between the indices J1 and J2 (sometimes */
 | |
| /*     replaced by modified values NRT, J1T or J2T). */
 | |
| 
 | |
| /*     The real cosines and complex sines of the rotations are stored in */
 | |
| /*     the arrays RWORK and WORK, those of the 1st set in elements */
 | |
| /*     2:m-kb-1, and those of the 2nd set in elements m-kb+1:n. */
 | |
| 
 | |
| /*     The bulges are not formed explicitly; nonzero elements outside the */
 | |
| /*     band are created only when they are required for generating new */
 | |
| /*     rotations; they are stored in the array WORK, in positions where */
 | |
| /*     they are later overwritten by the sines of the rotations which */
 | |
| /*     annihilate them. */
 | |
| 
 | |
| /*     **************************** Phase 1 ***************************** */
 | |
| 
 | |
| /*     The logical structure of this phase is: */
 | |
| 
 | |
| /*     UPDATE = .TRUE. */
 | |
| /*     DO I = N, M + 1, -1 */
 | |
| /*        use S(i) to update A and create a new bulge */
 | |
| /*        apply rotations to push all bulges KA positions downward */
 | |
| /*     END DO */
 | |
| /*     UPDATE = .FALSE. */
 | |
| /*     DO I = M + KA + 1, N - 1 */
 | |
| /*        apply rotations to push all bulges KA positions downward */
 | |
| /*     END DO */
 | |
| 
 | |
| /*     To avoid duplicating code, the two loops are merged. */
 | |
| 
 | |
|     update = TRUE_;
 | |
|     i__ = *n + 1;
 | |
| L10:
 | |
|     if (update) {
 | |
| 	--i__;
 | |
| /* Computing MIN */
 | |
| 	i__1 = *kb, i__2 = i__ - 1;
 | |
| 	kbt = f2cmin(i__1,i__2);
 | |
| 	i0 = i__ - 1;
 | |
| /* Computing MIN */
 | |
| 	i__1 = *n, i__2 = i__ + *ka;
 | |
| 	i1 = f2cmin(i__1,i__2);
 | |
| 	i2 = i__ - kbt + ka1;
 | |
| 	if (i__ < m + 1) {
 | |
| 	    update = FALSE_;
 | |
| 	    ++i__;
 | |
| 	    i0 = m;
 | |
| 	    if (*ka == 0) {
 | |
| 		goto L480;
 | |
| 	    }
 | |
| 	    goto L10;
 | |
| 	}
 | |
|     } else {
 | |
| 	i__ += *ka;
 | |
| 	if (i__ > *n - 1) {
 | |
| 	    goto L480;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (upper) {
 | |
| 
 | |
| /*        Transform A, working with the upper triangle */
 | |
| 
 | |
| 	if (update) {
 | |
| 
 | |
| /*           Form  inv(S(i))**H * A * inv(S(i)) */
 | |
| 
 | |
| 	    i__1 = kb1 + i__ * bb_dim1;
 | |
| 	    bii = bb[i__1].r;
 | |
| 	    i__1 = ka1 + i__ * ab_dim1;
 | |
| 	    i__2 = ka1 + i__ * ab_dim1;
 | |
| 	    d__1 = ab[i__2].r / bii / bii;
 | |
| 	    ab[i__1].r = d__1, ab[i__1].i = 0.;
 | |
| 	    i__1 = i1;
 | |
| 	    for (j = i__ + 1; j <= i__1; ++j) {
 | |
| 		i__2 = i__ - j + ka1 + j * ab_dim1;
 | |
| 		i__3 = i__ - j + ka1 + j * ab_dim1;
 | |
| 		z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
 | |
| 		ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| /* L20: */
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    i__1 = 1, i__2 = i__ - *ka;
 | |
| 	    i__3 = i__ - 1;
 | |
| 	    for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
 | |
| 		i__1 = j - i__ + ka1 + i__ * ab_dim1;
 | |
| 		i__2 = j - i__ + ka1 + i__ * ab_dim1;
 | |
| 		z__1.r = ab[i__2].r / bii, z__1.i = ab[i__2].i / bii;
 | |
| 		ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L30: */
 | |
| 	    }
 | |
| 	    i__3 = i__ - 1;
 | |
| 	    for (k = i__ - kbt; k <= i__3; ++k) {
 | |
| 		i__1 = k;
 | |
| 		for (j = i__ - kbt; j <= i__1; ++j) {
 | |
| 		    i__2 = j - k + ka1 + k * ab_dim1;
 | |
| 		    i__4 = j - k + ka1 + k * ab_dim1;
 | |
| 		    i__5 = j - i__ + kb1 + i__ * bb_dim1;
 | |
| 		    d_cnjg(&z__5, &ab[k - i__ + ka1 + i__ * ab_dim1]);
 | |
| 		    z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i, 
 | |
| 			    z__4.i = bb[i__5].r * z__5.i + bb[i__5].i * 
 | |
| 			    z__5.r;
 | |
| 		    z__3.r = ab[i__4].r - z__4.r, z__3.i = ab[i__4].i - 
 | |
| 			    z__4.i;
 | |
| 		    d_cnjg(&z__7, &bb[k - i__ + kb1 + i__ * bb_dim1]);
 | |
| 		    i__6 = j - i__ + ka1 + i__ * ab_dim1;
 | |
| 		    z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i, 
 | |
| 			    z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
 | |
| 			    .r;
 | |
| 		    z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
 | |
| 		    i__7 = ka1 + i__ * ab_dim1;
 | |
| 		    d__1 = ab[i__7].r;
 | |
| 		    i__8 = j - i__ + kb1 + i__ * bb_dim1;
 | |
| 		    z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
 | |
| 		    d_cnjg(&z__10, &bb[k - i__ + kb1 + i__ * bb_dim1]);
 | |
| 		    z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i = 
 | |
| 			    z__9.r * z__10.i + z__9.i * z__10.r;
 | |
| 		    z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
 | |
| 		    ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| /* L40: */
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| 		i__1 = 1, i__2 = i__ - *ka;
 | |
| 		i__4 = i__ - kbt - 1;
 | |
| 		for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
 | |
| 		    i__1 = j - k + ka1 + k * ab_dim1;
 | |
| 		    i__2 = j - k + ka1 + k * ab_dim1;
 | |
| 		    d_cnjg(&z__3, &bb[k - i__ + kb1 + i__ * bb_dim1]);
 | |
| 		    i__5 = j - i__ + ka1 + i__ * ab_dim1;
 | |
| 		    z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i, 
 | |
| 			    z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
 | |
| 			    .r;
 | |
| 		    z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i - 
 | |
| 			    z__2.i;
 | |
| 		    ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L50: */
 | |
| 		}
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	    i__3 = i1;
 | |
| 	    for (j = i__; j <= i__3; ++j) {
 | |
| /* Computing MAX */
 | |
| 		i__4 = j - *ka, i__1 = i__ - kbt;
 | |
| 		i__2 = i__ - 1;
 | |
| 		for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
 | |
| 		    i__4 = k - j + ka1 + j * ab_dim1;
 | |
| 		    i__1 = k - j + ka1 + j * ab_dim1;
 | |
| 		    i__5 = k - i__ + kb1 + i__ * bb_dim1;
 | |
| 		    i__6 = i__ - j + ka1 + j * ab_dim1;
 | |
| 		    z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
 | |
| 			    .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i 
 | |
| 			    * ab[i__6].r;
 | |
| 		    z__1.r = ab[i__1].r - z__2.r, z__1.i = ab[i__1].i - 
 | |
| 			    z__2.i;
 | |
| 		    ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
 | |
| /* L70: */
 | |
| 		}
 | |
| /* L80: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by inv(S(i)) */
 | |
| 
 | |
| 		i__3 = *n - m;
 | |
| 		d__1 = 1. / bii;
 | |
| 		zdscal_(&i__3, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
 | |
| 		if (kbt > 0) {
 | |
| 		    i__3 = *n - m;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgerc_(&i__3, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
 | |
| 			    c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m 
 | |
| 			    + 1 + (i__ - kbt) * x_dim1], ldx);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           store a(i,i1) in RA1 for use in next loop over K */
 | |
| 
 | |
| 	    i__3 = i__ - i1 + ka1 + i1 * ab_dim1;
 | |
| 	    ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
 | |
| 	}
 | |
| 
 | |
| /*        Generate and apply vectors of rotations to chase all the */
 | |
| /*        existing bulges KA positions down toward the bottom of the */
 | |
| /*        band */
 | |
| 
 | |
| 	i__3 = *kb - 1;
 | |
| 	for (k = 1; k <= i__3; ++k) {
 | |
| 	    if (update) {
 | |
| 
 | |
| /*              Determine the rotations which would annihilate the bulge */
 | |
| /*              which has in theory just been created */
 | |
| 
 | |
| 		if (i__ - k + *ka < *n && i__ - k > 1) {
 | |
| 
 | |
| /*                 generate rotation to annihilate a(i,i-k+ka+1) */
 | |
| 
 | |
| 		    zlartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
 | |
| 			    rwork[i__ - k + *ka - m], &work[i__ - k + *ka - m]
 | |
| 			    , &ra);
 | |
| 
 | |
| /*                 create nonzero element a(i-k,i-k+ka+1) outside the */
 | |
| /*                 band and store it in WORK(i-k) */
 | |
| 
 | |
| 		    i__2 = kb1 - k + i__ * bb_dim1;
 | |
| 		    z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
 | |
| 		    z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r 
 | |
| 			    * ra1.i + z__2.i * ra1.r;
 | |
| 		    t.r = z__1.r, t.i = z__1.i;
 | |
| 		    i__2 = i__ - k;
 | |
| 		    i__4 = i__ - k + *ka - m;
 | |
| 		    z__2.r = rwork[i__4] * t.r, z__2.i = rwork[i__4] * t.i;
 | |
| 		    d_cnjg(&z__4, &work[i__ - k + *ka - m]);
 | |
| 		    i__1 = (i__ - k + *ka) * ab_dim1 + 1;
 | |
| 		    z__3.r = z__4.r * ab[i__1].r - z__4.i * ab[i__1].i, 
 | |
| 			    z__3.i = z__4.r * ab[i__1].i + z__4.i * ab[i__1]
 | |
| 			    .r;
 | |
| 		    z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
| 		    work[i__2].r = z__1.r, work[i__2].i = z__1.i;
 | |
| 		    i__2 = (i__ - k + *ka) * ab_dim1 + 1;
 | |
| 		    i__4 = i__ - k + *ka - m;
 | |
| 		    z__2.r = work[i__4].r * t.r - work[i__4].i * t.i, z__2.i =
 | |
| 			     work[i__4].r * t.i + work[i__4].i * t.r;
 | |
| 		    i__1 = i__ - k + *ka - m;
 | |
| 		    i__5 = (i__ - k + *ka) * ab_dim1 + 1;
 | |
| 		    z__3.r = rwork[i__1] * ab[i__5].r, z__3.i = rwork[i__1] * 
 | |
| 			    ab[i__5].i;
 | |
| 		    z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
 | |
| 		    ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| 		    ra1.r = ra.r, ra1.i = ra.i;
 | |
| 		}
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    i__2 = 1, i__4 = k - i0 + 2;
 | |
| 	    j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
 | |
| 	    nr = (*n - j2 + *ka) / ka1;
 | |
| 	    j1 = j2 + (nr - 1) * ka1;
 | |
| 	    if (update) {
 | |
| /* Computing MAX */
 | |
| 		i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
 | |
| 		j2t = f2cmax(i__2,i__4);
 | |
| 	    } else {
 | |
| 		j2t = j2;
 | |
| 	    }
 | |
| 	    nrt = (*n - j2t + *ka) / ka1;
 | |
| 	    i__2 = j1;
 | |
| 	    i__4 = ka1;
 | |
| 	    for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
 | |
| 
 | |
| /*              create nonzero element a(j-ka,j+1) outside the band */
 | |
| /*              and store it in WORK(j-m) */
 | |
| 
 | |
| 		i__1 = j - m;
 | |
| 		i__5 = j - m;
 | |
| 		i__6 = (j + 1) * ab_dim1 + 1;
 | |
| 		z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
 | |
| 			.i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i 
 | |
| 			* ab[i__6].r;
 | |
| 		work[i__1].r = z__1.r, work[i__1].i = z__1.i;
 | |
| 		i__1 = (j + 1) * ab_dim1 + 1;
 | |
| 		i__5 = j - m;
 | |
| 		i__6 = (j + 1) * ab_dim1 + 1;
 | |
| 		z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
 | |
| 			i__6].i;
 | |
| 		ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L90: */
 | |
| 	    }
 | |
| 
 | |
| /*           generate rotations in 1st set to annihilate elements which */
 | |
| /*           have been created outside the band */
 | |
| 
 | |
| 	    if (nrt > 0) {
 | |
| 		zlargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
 | |
| 			ka1, &rwork[j2t - m], &ka1);
 | |
| 	    }
 | |
| 	    if (nr > 0) {
 | |
| 
 | |
| /*              apply rotations in 1st set from the right */
 | |
| 
 | |
| 		i__4 = *ka - 1;
 | |
| 		for (l = 1; l <= i__4; ++l) {
 | |
| 		    zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka 
 | |
| 			    - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - m], 
 | |
| 			    &work[j2 - m], &ka1);
 | |
| /* L100: */
 | |
| 		}
 | |
| 
 | |
| /*              apply rotations in 1st set from both sides to diagonal */
 | |
| /*              blocks */
 | |
| 
 | |
| 		zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) * 
 | |
| 			ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
 | |
| 			rwork[j2 - m], &work[j2 - m], &ka1);
 | |
| 
 | |
| 		zlacgv_(&nr, &work[j2 - m], &ka1);
 | |
| 	    }
 | |
| 
 | |
| /*           start applying rotations in 1st set from the left */
 | |
| 
 | |
| 	    i__4 = *kb - k + 1;
 | |
| 	    for (l = *ka - 1; l >= i__4; --l) {
 | |
| 		nrt = (*n - j2 + l) / ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
 | |
| 			    ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
 | |
| 			    rwork[j2 - m], &work[j2 - m], &ka1);
 | |
| 		}
 | |
| /* L110: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by product of rotations in 1st set */
 | |
| 
 | |
| 		i__4 = j1;
 | |
| 		i__2 = ka1;
 | |
| 		for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
 | |
| 		    i__1 = *n - m;
 | |
| 		    d_cnjg(&z__1, &work[j - m]);
 | |
| 		    zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j 
 | |
| 			    + 1) * x_dim1], &c__1, &rwork[j - m], &z__1);
 | |
| /* L120: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L130: */
 | |
| 	}
 | |
| 
 | |
| 	if (update) {
 | |
| 	    if (i2 <= *n && kbt > 0) {
 | |
| 
 | |
| /*              create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
 | |
| /*              band and store it in WORK(i-kbt) */
 | |
| 
 | |
| 		i__3 = i__ - kbt;
 | |
| 		i__2 = kb1 - kbt + i__ * bb_dim1;
 | |
| 		z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
 | |
| 		z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r * 
 | |
| 			ra1.i + z__2.i * ra1.r;
 | |
| 		work[i__3].r = z__1.r, work[i__3].i = z__1.i;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	for (k = *kb; k >= 1; --k) {
 | |
| 	    if (update) {
 | |
| /* Computing MAX */
 | |
| 		i__3 = 2, i__2 = k - i0 + 1;
 | |
| 		j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
 | |
| 	    } else {
 | |
| /* Computing MAX */
 | |
| 		i__3 = 1, i__2 = k - i0 + 1;
 | |
| 		j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
 | |
| 	    }
 | |
| 
 | |
| /*           finish applying rotations in 2nd set from the left */
 | |
| 
 | |
| 	    for (l = *kb - k; l >= 1; --l) {
 | |
| 		nrt = (*n - j2 + *ka + l) / ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
 | |
| 			    l + 1 + (j2 - l + 1) * ab_dim1], &inca, &rwork[j2 
 | |
| 			    - *ka], &work[j2 - *ka], &ka1);
 | |
| 		}
 | |
| /* L140: */
 | |
| 	    }
 | |
| 	    nr = (*n - j2 + *ka) / ka1;
 | |
| 	    j1 = j2 + (nr - 1) * ka1;
 | |
| 	    i__3 = j2;
 | |
| 	    i__2 = -ka1;
 | |
| 	    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
 | |
| 		i__4 = j;
 | |
| 		i__1 = j - *ka;
 | |
| 		work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
 | |
| 		rwork[j] = rwork[j - *ka];
 | |
| /* L150: */
 | |
| 	    }
 | |
| 	    i__2 = j1;
 | |
| 	    i__3 = ka1;
 | |
| 	    for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
 | |
| 
 | |
| /*              create nonzero element a(j-ka,j+1) outside the band */
 | |
| /*              and store it in WORK(j) */
 | |
| 
 | |
| 		i__4 = j;
 | |
| 		i__1 = j;
 | |
| 		i__5 = (j + 1) * ab_dim1 + 1;
 | |
| 		z__1.r = work[i__1].r * ab[i__5].r - work[i__1].i * ab[i__5]
 | |
| 			.i, z__1.i = work[i__1].r * ab[i__5].i + work[i__1].i 
 | |
| 			* ab[i__5].r;
 | |
| 		work[i__4].r = z__1.r, work[i__4].i = z__1.i;
 | |
| 		i__4 = (j + 1) * ab_dim1 + 1;
 | |
| 		i__1 = j;
 | |
| 		i__5 = (j + 1) * ab_dim1 + 1;
 | |
| 		z__1.r = rwork[i__1] * ab[i__5].r, z__1.i = rwork[i__1] * ab[
 | |
| 			i__5].i;
 | |
| 		ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
 | |
| /* L160: */
 | |
| 	    }
 | |
| 	    if (update) {
 | |
| 		if (i__ - k < *n - *ka && k <= kbt) {
 | |
| 		    i__3 = i__ - k + *ka;
 | |
| 		    i__2 = i__ - k;
 | |
| 		    work[i__3].r = work[i__2].r, work[i__3].i = work[i__2].i;
 | |
| 		}
 | |
| 	    }
 | |
| /* L170: */
 | |
| 	}
 | |
| 
 | |
| 	for (k = *kb; k >= 1; --k) {
 | |
| /* Computing MAX */
 | |
| 	    i__3 = 1, i__2 = k - i0 + 1;
 | |
| 	    j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
 | |
| 	    nr = (*n - j2 + *ka) / ka1;
 | |
| 	    j1 = j2 + (nr - 1) * ka1;
 | |
| 	    if (nr > 0) {
 | |
| 
 | |
| /*              generate rotations in 2nd set to annihilate elements */
 | |
| /*              which have been created outside the band */
 | |
| 
 | |
| 		zlargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
 | |
| 			rwork[j2], &ka1);
 | |
| 
 | |
| /*              apply rotations in 2nd set from the right */
 | |
| 
 | |
| 		i__3 = *ka - 1;
 | |
| 		for (l = 1; l <= i__3; ++l) {
 | |
| 		    zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka 
 | |
| 			    - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2], &
 | |
| 			    work[j2], &ka1);
 | |
| /* L180: */
 | |
| 		}
 | |
| 
 | |
| /*              apply rotations in 2nd set from both sides to diagonal */
 | |
| /*              blocks */
 | |
| 
 | |
| 		zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) * 
 | |
| 			ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
 | |
| 			rwork[j2], &work[j2], &ka1);
 | |
| 
 | |
| 		zlacgv_(&nr, &work[j2], &ka1);
 | |
| 	    }
 | |
| 
 | |
| /*           start applying rotations in 2nd set from the left */
 | |
| 
 | |
| 	    i__3 = *kb - k + 1;
 | |
| 	    for (l = *ka - 1; l >= i__3; --l) {
 | |
| 		nrt = (*n - j2 + l) / ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
 | |
| 			    ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
 | |
| 			    rwork[j2], &work[j2], &ka1);
 | |
| 		}
 | |
| /* L190: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by product of rotations in 2nd set */
 | |
| 
 | |
| 		i__3 = j1;
 | |
| 		i__2 = ka1;
 | |
| 		for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
 | |
| 		    i__4 = *n - m;
 | |
| 		    d_cnjg(&z__1, &work[j]);
 | |
| 		    zrot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j 
 | |
| 			    + 1) * x_dim1], &c__1, &rwork[j], &z__1);
 | |
| /* L200: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L210: */
 | |
| 	}
 | |
| 
 | |
| 	i__2 = *kb - 1;
 | |
| 	for (k = 1; k <= i__2; ++k) {
 | |
| /* Computing MAX */
 | |
| 	    i__3 = 1, i__4 = k - i0 + 2;
 | |
| 	    j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
 | |
| 
 | |
| /*           finish applying rotations in 1st set from the left */
 | |
| 
 | |
| 	    for (l = *kb - k; l >= 1; --l) {
 | |
| 		nrt = (*n - j2 + l) / ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
 | |
| 			    ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
 | |
| 			    rwork[j2 - m], &work[j2 - m], &ka1);
 | |
| 		}
 | |
| /* L220: */
 | |
| 	    }
 | |
| /* L230: */
 | |
| 	}
 | |
| 
 | |
| 	if (*kb > 1) {
 | |
| 	    i__2 = j2 + *ka;
 | |
| 	    for (j = *n - 1; j >= i__2; --j) {
 | |
| 		rwork[j - m] = rwork[j - *ka - m];
 | |
| 		i__3 = j - m;
 | |
| 		i__4 = j - *ka - m;
 | |
| 		work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
 | |
| /* L240: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Transform A, working with the lower triangle */
 | |
| 
 | |
| 	if (update) {
 | |
| 
 | |
| /*           Form  inv(S(i))**H * A * inv(S(i)) */
 | |
| 
 | |
| 	    i__2 = i__ * bb_dim1 + 1;
 | |
| 	    bii = bb[i__2].r;
 | |
| 	    i__2 = i__ * ab_dim1 + 1;
 | |
| 	    i__3 = i__ * ab_dim1 + 1;
 | |
| 	    d__1 = ab[i__3].r / bii / bii;
 | |
| 	    ab[i__2].r = d__1, ab[i__2].i = 0.;
 | |
| 	    i__2 = i1;
 | |
| 	    for (j = i__ + 1; j <= i__2; ++j) {
 | |
| 		i__3 = j - i__ + 1 + i__ * ab_dim1;
 | |
| 		i__4 = j - i__ + 1 + i__ * ab_dim1;
 | |
| 		z__1.r = ab[i__4].r / bii, z__1.i = ab[i__4].i / bii;
 | |
| 		ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
 | |
| /* L250: */
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    i__2 = 1, i__3 = i__ - *ka;
 | |
| 	    i__4 = i__ - 1;
 | |
| 	    for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
 | |
| 		i__2 = i__ - j + 1 + j * ab_dim1;
 | |
| 		i__3 = i__ - j + 1 + j * ab_dim1;
 | |
| 		z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
 | |
| 		ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| /* L260: */
 | |
| 	    }
 | |
| 	    i__4 = i__ - 1;
 | |
| 	    for (k = i__ - kbt; k <= i__4; ++k) {
 | |
| 		i__2 = k;
 | |
| 		for (j = i__ - kbt; j <= i__2; ++j) {
 | |
| 		    i__3 = k - j + 1 + j * ab_dim1;
 | |
| 		    i__1 = k - j + 1 + j * ab_dim1;
 | |
| 		    i__5 = i__ - j + 1 + j * bb_dim1;
 | |
| 		    d_cnjg(&z__5, &ab[i__ - k + 1 + k * ab_dim1]);
 | |
| 		    z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i, 
 | |
| 			    z__4.i = bb[i__5].r * z__5.i + bb[i__5].i * 
 | |
| 			    z__5.r;
 | |
| 		    z__3.r = ab[i__1].r - z__4.r, z__3.i = ab[i__1].i - 
 | |
| 			    z__4.i;
 | |
| 		    d_cnjg(&z__7, &bb[i__ - k + 1 + k * bb_dim1]);
 | |
| 		    i__6 = i__ - j + 1 + j * ab_dim1;
 | |
| 		    z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i, 
 | |
| 			    z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
 | |
| 			    .r;
 | |
| 		    z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
 | |
| 		    i__7 = i__ * ab_dim1 + 1;
 | |
| 		    d__1 = ab[i__7].r;
 | |
| 		    i__8 = i__ - j + 1 + j * bb_dim1;
 | |
| 		    z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
 | |
| 		    d_cnjg(&z__10, &bb[i__ - k + 1 + k * bb_dim1]);
 | |
| 		    z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i = 
 | |
| 			    z__9.r * z__10.i + z__9.i * z__10.r;
 | |
| 		    z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
 | |
| 		    ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
 | |
| /* L270: */
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| 		i__2 = 1, i__3 = i__ - *ka;
 | |
| 		i__1 = i__ - kbt - 1;
 | |
| 		for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
 | |
| 		    i__2 = k - j + 1 + j * ab_dim1;
 | |
| 		    i__3 = k - j + 1 + j * ab_dim1;
 | |
| 		    d_cnjg(&z__3, &bb[i__ - k + 1 + k * bb_dim1]);
 | |
| 		    i__5 = i__ - j + 1 + j * ab_dim1;
 | |
| 		    z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i, 
 | |
| 			    z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
 | |
| 			    .r;
 | |
| 		    z__1.r = ab[i__3].r - z__2.r, z__1.i = ab[i__3].i - 
 | |
| 			    z__2.i;
 | |
| 		    ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| /* L280: */
 | |
| 		}
 | |
| /* L290: */
 | |
| 	    }
 | |
| 	    i__4 = i1;
 | |
| 	    for (j = i__; j <= i__4; ++j) {
 | |
| /* Computing MAX */
 | |
| 		i__1 = j - *ka, i__2 = i__ - kbt;
 | |
| 		i__3 = i__ - 1;
 | |
| 		for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
 | |
| 		    i__1 = j - k + 1 + k * ab_dim1;
 | |
| 		    i__2 = j - k + 1 + k * ab_dim1;
 | |
| 		    i__5 = i__ - k + 1 + k * bb_dim1;
 | |
| 		    i__6 = j - i__ + 1 + i__ * ab_dim1;
 | |
| 		    z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
 | |
| 			    .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i 
 | |
| 			    * ab[i__6].r;
 | |
| 		    z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i - 
 | |
| 			    z__2.i;
 | |
| 		    ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L300: */
 | |
| 		}
 | |
| /* L310: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by inv(S(i)) */
 | |
| 
 | |
| 		i__4 = *n - m;
 | |
| 		d__1 = 1. / bii;
 | |
| 		zdscal_(&i__4, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
 | |
| 		if (kbt > 0) {
 | |
| 		    i__4 = *n - m;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    i__3 = *ldbb - 1;
 | |
| 		    zgeru_(&i__4, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
 | |
| 			    c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
 | |
| 			     &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           store a(i1,i) in RA1 for use in next loop over K */
 | |
| 
 | |
| 	    i__4 = i1 - i__ + 1 + i__ * ab_dim1;
 | |
| 	    ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
 | |
| 	}
 | |
| 
 | |
| /*        Generate and apply vectors of rotations to chase all the */
 | |
| /*        existing bulges KA positions down toward the bottom of the */
 | |
| /*        band */
 | |
| 
 | |
| 	i__4 = *kb - 1;
 | |
| 	for (k = 1; k <= i__4; ++k) {
 | |
| 	    if (update) {
 | |
| 
 | |
| /*              Determine the rotations which would annihilate the bulge */
 | |
| /*              which has in theory just been created */
 | |
| 
 | |
| 		if (i__ - k + *ka < *n && i__ - k > 1) {
 | |
| 
 | |
| /*                 generate rotation to annihilate a(i-k+ka+1,i) */
 | |
| 
 | |
| 		    zlartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &rwork[i__ - 
 | |
| 			    k + *ka - m], &work[i__ - k + *ka - m], &ra);
 | |
| 
 | |
| /*                 create nonzero element a(i-k+ka+1,i-k) outside the */
 | |
| /*                 band and store it in WORK(i-k) */
 | |
| 
 | |
| 		    i__3 = k + 1 + (i__ - k) * bb_dim1;
 | |
| 		    z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
 | |
| 		    z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r 
 | |
| 			    * ra1.i + z__2.i * ra1.r;
 | |
| 		    t.r = z__1.r, t.i = z__1.i;
 | |
| 		    i__3 = i__ - k;
 | |
| 		    i__1 = i__ - k + *ka - m;
 | |
| 		    z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
 | |
| 		    d_cnjg(&z__4, &work[i__ - k + *ka - m]);
 | |
| 		    i__2 = ka1 + (i__ - k) * ab_dim1;
 | |
| 		    z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i, 
 | |
| 			    z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
 | |
| 			    .r;
 | |
| 		    z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
| 		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
 | |
| 		    i__3 = ka1 + (i__ - k) * ab_dim1;
 | |
| 		    i__1 = i__ - k + *ka - m;
 | |
| 		    z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
 | |
| 			     work[i__1].r * t.i + work[i__1].i * t.r;
 | |
| 		    i__2 = i__ - k + *ka - m;
 | |
| 		    i__5 = ka1 + (i__ - k) * ab_dim1;
 | |
| 		    z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] * 
 | |
| 			    ab[i__5].i;
 | |
| 		    z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
 | |
| 		    ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
 | |
| 		    ra1.r = ra.r, ra1.i = ra.i;
 | |
| 		}
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    i__3 = 1, i__1 = k - i0 + 2;
 | |
| 	    j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
 | |
| 	    nr = (*n - j2 + *ka) / ka1;
 | |
| 	    j1 = j2 + (nr - 1) * ka1;
 | |
| 	    if (update) {
 | |
| /* Computing MAX */
 | |
| 		i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
 | |
| 		j2t = f2cmax(i__3,i__1);
 | |
| 	    } else {
 | |
| 		j2t = j2;
 | |
| 	    }
 | |
| 	    nrt = (*n - j2t + *ka) / ka1;
 | |
| 	    i__3 = j1;
 | |
| 	    i__1 = ka1;
 | |
| 	    for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
 | |
| 
 | |
| /*              create nonzero element a(j+1,j-ka) outside the band */
 | |
| /*              and store it in WORK(j-m) */
 | |
| 
 | |
| 		i__2 = j - m;
 | |
| 		i__5 = j - m;
 | |
| 		i__6 = ka1 + (j - *ka + 1) * ab_dim1;
 | |
| 		z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
 | |
| 			.i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i 
 | |
| 			* ab[i__6].r;
 | |
| 		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
 | |
| 		i__2 = ka1 + (j - *ka + 1) * ab_dim1;
 | |
| 		i__5 = j - m;
 | |
| 		i__6 = ka1 + (j - *ka + 1) * ab_dim1;
 | |
| 		z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
 | |
| 			i__6].i;
 | |
| 		ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| /* L320: */
 | |
| 	    }
 | |
| 
 | |
| /*           generate rotations in 1st set to annihilate elements which */
 | |
| /*           have been created outside the band */
 | |
| 
 | |
| 	    if (nrt > 0) {
 | |
| 		zlargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
 | |
| 			j2t - m], &ka1, &rwork[j2t - m], &ka1);
 | |
| 	    }
 | |
| 	    if (nr > 0) {
 | |
| 
 | |
| /*              apply rotations in 1st set from the left */
 | |
| 
 | |
| 		i__1 = *ka - 1;
 | |
| 		for (l = 1; l <= i__1; ++l) {
 | |
| 		    zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
 | |
| 			    l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2 - m]
 | |
| 			    , &work[j2 - m], &ka1);
 | |
| /* L330: */
 | |
| 		}
 | |
| 
 | |
| /*              apply rotations in 1st set from both sides to diagonal */
 | |
| /*              blocks */
 | |
| 
 | |
| 		zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 + 
 | |
| 			1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2 - m], &
 | |
| 			work[j2 - m], &ka1);
 | |
| 
 | |
| 		zlacgv_(&nr, &work[j2 - m], &ka1);
 | |
| 	    }
 | |
| 
 | |
| /*           start applying rotations in 1st set from the right */
 | |
| 
 | |
| 	    i__1 = *kb - k + 1;
 | |
| 	    for (l = *ka - 1; l >= i__1; --l) {
 | |
| 		nrt = (*n - j2 + l) / ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
 | |
| 			    ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - 
 | |
| 			    m], &work[j2 - m], &ka1);
 | |
| 		}
 | |
| /* L340: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by product of rotations in 1st set */
 | |
| 
 | |
| 		i__1 = j1;
 | |
| 		i__3 = ka1;
 | |
| 		for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
 | |
| 		    i__2 = *n - m;
 | |
| 		    zrot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j 
 | |
| 			    + 1) * x_dim1], &c__1, &rwork[j - m], &work[j - m]
 | |
| 			    );
 | |
| /* L350: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L360: */
 | |
| 	}
 | |
| 
 | |
| 	if (update) {
 | |
| 	    if (i2 <= *n && kbt > 0) {
 | |
| 
 | |
| /*              create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
 | |
| /*              band and store it in WORK(i-kbt) */
 | |
| 
 | |
| 		i__4 = i__ - kbt;
 | |
| 		i__3 = kbt + 1 + (i__ - kbt) * bb_dim1;
 | |
| 		z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
 | |
| 		z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r * 
 | |
| 			ra1.i + z__2.i * ra1.r;
 | |
| 		work[i__4].r = z__1.r, work[i__4].i = z__1.i;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	for (k = *kb; k >= 1; --k) {
 | |
| 	    if (update) {
 | |
| /* Computing MAX */
 | |
| 		i__4 = 2, i__3 = k - i0 + 1;
 | |
| 		j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
 | |
| 	    } else {
 | |
| /* Computing MAX */
 | |
| 		i__4 = 1, i__3 = k - i0 + 1;
 | |
| 		j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
 | |
| 	    }
 | |
| 
 | |
| /*           finish applying rotations in 2nd set from the right */
 | |
| 
 | |
| 	    for (l = *kb - k; l >= 1; --l) {
 | |
| 		nrt = (*n - j2 + *ka + l) / ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
 | |
| 			    inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
 | |
| 			    inca, &rwork[j2 - *ka], &work[j2 - *ka], &ka1);
 | |
| 		}
 | |
| /* L370: */
 | |
| 	    }
 | |
| 	    nr = (*n - j2 + *ka) / ka1;
 | |
| 	    j1 = j2 + (nr - 1) * ka1;
 | |
| 	    i__4 = j2;
 | |
| 	    i__3 = -ka1;
 | |
| 	    for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
 | |
| 		i__1 = j;
 | |
| 		i__2 = j - *ka;
 | |
| 		work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
 | |
| 		rwork[j] = rwork[j - *ka];
 | |
| /* L380: */
 | |
| 	    }
 | |
| 	    i__3 = j1;
 | |
| 	    i__4 = ka1;
 | |
| 	    for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
 | |
| 
 | |
| /*              create nonzero element a(j+1,j-ka) outside the band */
 | |
| /*              and store it in WORK(j) */
 | |
| 
 | |
| 		i__1 = j;
 | |
| 		i__2 = j;
 | |
| 		i__5 = ka1 + (j - *ka + 1) * ab_dim1;
 | |
| 		z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
 | |
| 			.i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i 
 | |
| 			* ab[i__5].r;
 | |
| 		work[i__1].r = z__1.r, work[i__1].i = z__1.i;
 | |
| 		i__1 = ka1 + (j - *ka + 1) * ab_dim1;
 | |
| 		i__2 = j;
 | |
| 		i__5 = ka1 + (j - *ka + 1) * ab_dim1;
 | |
| 		z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
 | |
| 			i__5].i;
 | |
| 		ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L390: */
 | |
| 	    }
 | |
| 	    if (update) {
 | |
| 		if (i__ - k < *n - *ka && k <= kbt) {
 | |
| 		    i__4 = i__ - k + *ka;
 | |
| 		    i__3 = i__ - k;
 | |
| 		    work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
 | |
| 		}
 | |
| 	    }
 | |
| /* L400: */
 | |
| 	}
 | |
| 
 | |
| 	for (k = *kb; k >= 1; --k) {
 | |
| /* Computing MAX */
 | |
| 	    i__4 = 1, i__3 = k - i0 + 1;
 | |
| 	    j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
 | |
| 	    nr = (*n - j2 + *ka) / ka1;
 | |
| 	    j1 = j2 + (nr - 1) * ka1;
 | |
| 	    if (nr > 0) {
 | |
| 
 | |
| /*              generate rotations in 2nd set to annihilate elements */
 | |
| /*              which have been created outside the band */
 | |
| 
 | |
| 		zlargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
 | |
| 			, &ka1, &rwork[j2], &ka1);
 | |
| 
 | |
| /*              apply rotations in 2nd set from the left */
 | |
| 
 | |
| 		i__4 = *ka - 1;
 | |
| 		for (l = 1; l <= i__4; ++l) {
 | |
| 		    zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
 | |
| 			    l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2], &
 | |
| 			    work[j2], &ka1);
 | |
| /* L410: */
 | |
| 		}
 | |
| 
 | |
| /*              apply rotations in 2nd set from both sides to diagonal */
 | |
| /*              blocks */
 | |
| 
 | |
| 		zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 + 
 | |
| 			1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2], &work[
 | |
| 			j2], &ka1);
 | |
| 
 | |
| 		zlacgv_(&nr, &work[j2], &ka1);
 | |
| 	    }
 | |
| 
 | |
| /*           start applying rotations in 2nd set from the right */
 | |
| 
 | |
| 	    i__4 = *kb - k + 1;
 | |
| 	    for (l = *ka - 1; l >= i__4; --l) {
 | |
| 		nrt = (*n - j2 + l) / ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
 | |
| 			    ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2], 
 | |
| 			    &work[j2], &ka1);
 | |
| 		}
 | |
| /* L420: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by product of rotations in 2nd set */
 | |
| 
 | |
| 		i__4 = j1;
 | |
| 		i__3 = ka1;
 | |
| 		for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
 | |
| 		    i__1 = *n - m;
 | |
| 		    zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j 
 | |
| 			    + 1) * x_dim1], &c__1, &rwork[j], &work[j]);
 | |
| /* L430: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L440: */
 | |
| 	}
 | |
| 
 | |
| 	i__3 = *kb - 1;
 | |
| 	for (k = 1; k <= i__3; ++k) {
 | |
| /* Computing MAX */
 | |
| 	    i__4 = 1, i__1 = k - i0 + 2;
 | |
| 	    j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
 | |
| 
 | |
| /*           finish applying rotations in 1st set from the right */
 | |
| 
 | |
| 	    for (l = *kb - k; l >= 1; --l) {
 | |
| 		nrt = (*n - j2 + l) / ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
 | |
| 			    ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - 
 | |
| 			    m], &work[j2 - m], &ka1);
 | |
| 		}
 | |
| /* L450: */
 | |
| 	    }
 | |
| /* L460: */
 | |
| 	}
 | |
| 
 | |
| 	if (*kb > 1) {
 | |
| 	    i__3 = j2 + *ka;
 | |
| 	    for (j = *n - 1; j >= i__3; --j) {
 | |
| 		rwork[j - m] = rwork[j - *ka - m];
 | |
| 		i__4 = j - m;
 | |
| 		i__1 = j - *ka - m;
 | |
| 		work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
 | |
| /* L470: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
|     goto L10;
 | |
| 
 | |
| L480:
 | |
| 
 | |
| /*     **************************** Phase 2 ***************************** */
 | |
| 
 | |
| /*     The logical structure of this phase is: */
 | |
| 
 | |
| /*     UPDATE = .TRUE. */
 | |
| /*     DO I = 1, M */
 | |
| /*        use S(i) to update A and create a new bulge */
 | |
| /*        apply rotations to push all bulges KA positions upward */
 | |
| /*     END DO */
 | |
| /*     UPDATE = .FALSE. */
 | |
| /*     DO I = M - KA - 1, 2, -1 */
 | |
| /*        apply rotations to push all bulges KA positions upward */
 | |
| /*     END DO */
 | |
| 
 | |
| /*     To avoid duplicating code, the two loops are merged. */
 | |
| 
 | |
|     update = TRUE_;
 | |
|     i__ = 0;
 | |
| L490:
 | |
|     if (update) {
 | |
| 	++i__;
 | |
| /* Computing MIN */
 | |
| 	i__3 = *kb, i__4 = m - i__;
 | |
| 	kbt = f2cmin(i__3,i__4);
 | |
| 	i0 = i__ + 1;
 | |
| /* Computing MAX */
 | |
| 	i__3 = 1, i__4 = i__ - *ka;
 | |
| 	i1 = f2cmax(i__3,i__4);
 | |
| 	i2 = i__ + kbt - ka1;
 | |
| 	if (i__ > m) {
 | |
| 	    update = FALSE_;
 | |
| 	    --i__;
 | |
| 	    i0 = m + 1;
 | |
| 	    if (*ka == 0) {
 | |
| 		return;
 | |
| 	    }
 | |
| 	    goto L490;
 | |
| 	}
 | |
|     } else {
 | |
| 	i__ -= *ka;
 | |
| 	if (i__ < 2) {
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (i__ < m - kbt) {
 | |
| 	nx = m;
 | |
|     } else {
 | |
| 	nx = *n;
 | |
|     }
 | |
| 
 | |
|     if (upper) {
 | |
| 
 | |
| /*        Transform A, working with the upper triangle */
 | |
| 
 | |
| 	if (update) {
 | |
| 
 | |
| /*           Form  inv(S(i))**H * A * inv(S(i)) */
 | |
| 
 | |
| 	    i__3 = kb1 + i__ * bb_dim1;
 | |
| 	    bii = bb[i__3].r;
 | |
| 	    i__3 = ka1 + i__ * ab_dim1;
 | |
| 	    i__4 = ka1 + i__ * ab_dim1;
 | |
| 	    d__1 = ab[i__4].r / bii / bii;
 | |
| 	    ab[i__3].r = d__1, ab[i__3].i = 0.;
 | |
| 	    i__3 = i__ - 1;
 | |
| 	    for (j = i1; j <= i__3; ++j) {
 | |
| 		i__4 = j - i__ + ka1 + i__ * ab_dim1;
 | |
| 		i__1 = j - i__ + ka1 + i__ * ab_dim1;
 | |
| 		z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
 | |
| 		ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
 | |
| /* L500: */
 | |
| 	    }
 | |
| /* Computing MIN */
 | |
| 	    i__4 = *n, i__1 = i__ + *ka;
 | |
| 	    i__3 = f2cmin(i__4,i__1);
 | |
| 	    for (j = i__ + 1; j <= i__3; ++j) {
 | |
| 		i__4 = i__ - j + ka1 + j * ab_dim1;
 | |
| 		i__1 = i__ - j + ka1 + j * ab_dim1;
 | |
| 		z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
 | |
| 		ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
 | |
| /* L510: */
 | |
| 	    }
 | |
| 	    i__3 = i__ + kbt;
 | |
| 	    for (k = i__ + 1; k <= i__3; ++k) {
 | |
| 		i__4 = i__ + kbt;
 | |
| 		for (j = k; j <= i__4; ++j) {
 | |
| 		    i__1 = k - j + ka1 + j * ab_dim1;
 | |
| 		    i__2 = k - j + ka1 + j * ab_dim1;
 | |
| 		    i__5 = i__ - j + kb1 + j * bb_dim1;
 | |
| 		    d_cnjg(&z__5, &ab[i__ - k + ka1 + k * ab_dim1]);
 | |
| 		    z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i, 
 | |
| 			    z__4.i = bb[i__5].r * z__5.i + bb[i__5].i * 
 | |
| 			    z__5.r;
 | |
| 		    z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i - 
 | |
| 			    z__4.i;
 | |
| 		    d_cnjg(&z__7, &bb[i__ - k + kb1 + k * bb_dim1]);
 | |
| 		    i__6 = i__ - j + ka1 + j * ab_dim1;
 | |
| 		    z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i, 
 | |
| 			    z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
 | |
| 			    .r;
 | |
| 		    z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
 | |
| 		    i__7 = ka1 + i__ * ab_dim1;
 | |
| 		    d__1 = ab[i__7].r;
 | |
| 		    i__8 = i__ - j + kb1 + j * bb_dim1;
 | |
| 		    z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
 | |
| 		    d_cnjg(&z__10, &bb[i__ - k + kb1 + k * bb_dim1]);
 | |
| 		    z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i = 
 | |
| 			    z__9.r * z__10.i + z__9.i * z__10.r;
 | |
| 		    z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
 | |
| 		    ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L520: */
 | |
| 		}
 | |
| /* Computing MIN */
 | |
| 		i__1 = *n, i__2 = i__ + *ka;
 | |
| 		i__4 = f2cmin(i__1,i__2);
 | |
| 		for (j = i__ + kbt + 1; j <= i__4; ++j) {
 | |
| 		    i__1 = k - j + ka1 + j * ab_dim1;
 | |
| 		    i__2 = k - j + ka1 + j * ab_dim1;
 | |
| 		    d_cnjg(&z__3, &bb[i__ - k + kb1 + k * bb_dim1]);
 | |
| 		    i__5 = i__ - j + ka1 + j * ab_dim1;
 | |
| 		    z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i, 
 | |
| 			    z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
 | |
| 			    .r;
 | |
| 		    z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i - 
 | |
| 			    z__2.i;
 | |
| 		    ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L530: */
 | |
| 		}
 | |
| /* L540: */
 | |
| 	    }
 | |
| 	    i__3 = i__;
 | |
| 	    for (j = i1; j <= i__3; ++j) {
 | |
| /* Computing MIN */
 | |
| 		i__1 = j + *ka, i__2 = i__ + kbt;
 | |
| 		i__4 = f2cmin(i__1,i__2);
 | |
| 		for (k = i__ + 1; k <= i__4; ++k) {
 | |
| 		    i__1 = j - k + ka1 + k * ab_dim1;
 | |
| 		    i__2 = j - k + ka1 + k * ab_dim1;
 | |
| 		    i__5 = i__ - k + kb1 + k * bb_dim1;
 | |
| 		    i__6 = j - i__ + ka1 + i__ * ab_dim1;
 | |
| 		    z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
 | |
| 			    .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i 
 | |
| 			    * ab[i__6].r;
 | |
| 		    z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i - 
 | |
| 			    z__2.i;
 | |
| 		    ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L550: */
 | |
| 		}
 | |
| /* L560: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by inv(S(i)) */
 | |
| 
 | |
| 		d__1 = 1. / bii;
 | |
| 		zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
 | |
| 		if (kbt > 0) {
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    i__3 = *ldbb - 1;
 | |
| 		    zgeru_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
 | |
| 			    *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) * 
 | |
| 			    x_dim1 + 1], ldx);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           store a(i1,i) in RA1 for use in next loop over K */
 | |
| 
 | |
| 	    i__3 = i1 - i__ + ka1 + i__ * ab_dim1;
 | |
| 	    ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
 | |
| 	}
 | |
| 
 | |
| /*        Generate and apply vectors of rotations to chase all the */
 | |
| /*        existing bulges KA positions up toward the top of the band */
 | |
| 
 | |
| 	i__3 = *kb - 1;
 | |
| 	for (k = 1; k <= i__3; ++k) {
 | |
| 	    if (update) {
 | |
| 
 | |
| /*              Determine the rotations which would annihilate the bulge */
 | |
| /*              which has in theory just been created */
 | |
| 
 | |
| 		if (i__ + k - ka1 > 0 && i__ + k < m) {
 | |
| 
 | |
| /*                 generate rotation to annihilate a(i+k-ka-1,i) */
 | |
| 
 | |
| 		    zlartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &rwork[i__ + k 
 | |
| 			    - *ka], &work[i__ + k - *ka], &ra);
 | |
| 
 | |
| /*                 create nonzero element a(i+k-ka-1,i+k) outside the */
 | |
| /*                 band and store it in WORK(m-kb+i+k) */
 | |
| 
 | |
| 		    i__4 = kb1 - k + (i__ + k) * bb_dim1;
 | |
| 		    z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
 | |
| 		    z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r 
 | |
| 			    * ra1.i + z__2.i * ra1.r;
 | |
| 		    t.r = z__1.r, t.i = z__1.i;
 | |
| 		    i__4 = m - *kb + i__ + k;
 | |
| 		    i__1 = i__ + k - *ka;
 | |
| 		    z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
 | |
| 		    d_cnjg(&z__4, &work[i__ + k - *ka]);
 | |
| 		    i__2 = (i__ + k) * ab_dim1 + 1;
 | |
| 		    z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i, 
 | |
| 			    z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
 | |
| 			    .r;
 | |
| 		    z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
| 		    work[i__4].r = z__1.r, work[i__4].i = z__1.i;
 | |
| 		    i__4 = (i__ + k) * ab_dim1 + 1;
 | |
| 		    i__1 = i__ + k - *ka;
 | |
| 		    z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
 | |
| 			     work[i__1].r * t.i + work[i__1].i * t.r;
 | |
| 		    i__2 = i__ + k - *ka;
 | |
| 		    i__5 = (i__ + k) * ab_dim1 + 1;
 | |
| 		    z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] * 
 | |
| 			    ab[i__5].i;
 | |
| 		    z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
 | |
| 		    ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
 | |
| 		    ra1.r = ra.r, ra1.i = ra.i;
 | |
| 		}
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    i__4 = 1, i__1 = k + i0 - m + 1;
 | |
| 	    j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
 | |
| 	    nr = (j2 + *ka - 1) / ka1;
 | |
| 	    j1 = j2 - (nr - 1) * ka1;
 | |
| 	    if (update) {
 | |
| /* Computing MIN */
 | |
| 		i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
 | |
| 		j2t = f2cmin(i__4,i__1);
 | |
| 	    } else {
 | |
| 		j2t = j2;
 | |
| 	    }
 | |
| 	    nrt = (j2t + *ka - 1) / ka1;
 | |
| 	    i__4 = j2t;
 | |
| 	    i__1 = ka1;
 | |
| 	    for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
 | |
| 
 | |
| /*              create nonzero element a(j-1,j+ka) outside the band */
 | |
| /*              and store it in WORK(j) */
 | |
| 
 | |
| 		i__2 = j;
 | |
| 		i__5 = j;
 | |
| 		i__6 = (j + *ka - 1) * ab_dim1 + 1;
 | |
| 		z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
 | |
| 			.i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i 
 | |
| 			* ab[i__6].r;
 | |
| 		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
 | |
| 		i__2 = (j + *ka - 1) * ab_dim1 + 1;
 | |
| 		i__5 = j;
 | |
| 		i__6 = (j + *ka - 1) * ab_dim1 + 1;
 | |
| 		z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
 | |
| 			i__6].i;
 | |
| 		ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| /* L570: */
 | |
| 	    }
 | |
| 
 | |
| /*           generate rotations in 1st set to annihilate elements which */
 | |
| /*           have been created outside the band */
 | |
| 
 | |
| 	    if (nrt > 0) {
 | |
| 		zlargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
 | |
| 			 &ka1, &rwork[j1], &ka1);
 | |
| 	    }
 | |
| 	    if (nr > 0) {
 | |
| 
 | |
| /*              apply rotations in 1st set from the left */
 | |
| 
 | |
| 		i__1 = *ka - 1;
 | |
| 		for (l = 1; l <= i__1; ++l) {
 | |
| 		    zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
 | |
| 			    ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[
 | |
| 			    j1], &work[j1], &ka1);
 | |
| /* L580: */
 | |
| 		}
 | |
| 
 | |
| /*              apply rotations in 1st set from both sides to diagonal */
 | |
| /*              blocks */
 | |
| 
 | |
| 		zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) * 
 | |
| 			ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[j1], 
 | |
| 			&work[j1], &ka1);
 | |
| 
 | |
| 		zlacgv_(&nr, &work[j1], &ka1);
 | |
| 	    }
 | |
| 
 | |
| /*           start applying rotations in 1st set from the right */
 | |
| 
 | |
| 	    i__1 = *kb - k + 1;
 | |
| 	    for (l = *ka - 1; l >= i__1; --l) {
 | |
| 		nrt = (j2 + l - 1) / ka1;
 | |
| 		j1t = j2 - (nrt - 1) * ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
 | |
| 			    j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
 | |
| 			    j1t], &ka1);
 | |
| 		}
 | |
| /* L590: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by product of rotations in 1st set */
 | |
| 
 | |
| 		i__1 = j2;
 | |
| 		i__4 = ka1;
 | |
| 		for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
 | |
| 		    zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1 
 | |
| 			    + 1], &c__1, &rwork[j], &work[j]);
 | |
| /* L600: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L610: */
 | |
| 	}
 | |
| 
 | |
| 	if (update) {
 | |
| 	    if (i2 > 0 && kbt > 0) {
 | |
| 
 | |
| /*              create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
 | |
| /*              band and store it in WORK(m-kb+i+kbt) */
 | |
| 
 | |
| 		i__3 = m - *kb + i__ + kbt;
 | |
| 		i__4 = kb1 - kbt + (i__ + kbt) * bb_dim1;
 | |
| 		z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
 | |
| 		z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r * 
 | |
| 			ra1.i + z__2.i * ra1.r;
 | |
| 		work[i__3].r = z__1.r, work[i__3].i = z__1.i;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	for (k = *kb; k >= 1; --k) {
 | |
| 	    if (update) {
 | |
| /* Computing MAX */
 | |
| 		i__3 = 2, i__4 = k + i0 - m;
 | |
| 		j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
 | |
| 	    } else {
 | |
| /* Computing MAX */
 | |
| 		i__3 = 1, i__4 = k + i0 - m;
 | |
| 		j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
 | |
| 	    }
 | |
| 
 | |
| /*           finish applying rotations in 2nd set from the right */
 | |
| 
 | |
| 	    for (l = *kb - k; l >= 1; --l) {
 | |
| 		nrt = (j2 + *ka + l - 1) / ka1;
 | |
| 		j1t = j2 - (nrt - 1) * ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
 | |
| 			    l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &rwork[
 | |
| 			    m - *kb + j1t + *ka], &work[m - *kb + j1t + *ka], 
 | |
| 			    &ka1);
 | |
| 		}
 | |
| /* L620: */
 | |
| 	    }
 | |
| 	    nr = (j2 + *ka - 1) / ka1;
 | |
| 	    j1 = j2 - (nr - 1) * ka1;
 | |
| 	    i__3 = j2;
 | |
| 	    i__4 = ka1;
 | |
| 	    for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
 | |
| 		i__1 = m - *kb + j;
 | |
| 		i__2 = m - *kb + j + *ka;
 | |
| 		work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
 | |
| 		rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
 | |
| /* L630: */
 | |
| 	    }
 | |
| 	    i__4 = j2;
 | |
| 	    i__3 = ka1;
 | |
| 	    for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
 | |
| 
 | |
| /*              create nonzero element a(j-1,j+ka) outside the band */
 | |
| /*              and store it in WORK(m-kb+j) */
 | |
| 
 | |
| 		i__1 = m - *kb + j;
 | |
| 		i__2 = m - *kb + j;
 | |
| 		i__5 = (j + *ka - 1) * ab_dim1 + 1;
 | |
| 		z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
 | |
| 			.i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i 
 | |
| 			* ab[i__5].r;
 | |
| 		work[i__1].r = z__1.r, work[i__1].i = z__1.i;
 | |
| 		i__1 = (j + *ka - 1) * ab_dim1 + 1;
 | |
| 		i__2 = m - *kb + j;
 | |
| 		i__5 = (j + *ka - 1) * ab_dim1 + 1;
 | |
| 		z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
 | |
| 			i__5].i;
 | |
| 		ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L640: */
 | |
| 	    }
 | |
| 	    if (update) {
 | |
| 		if (i__ + k > ka1 && k <= kbt) {
 | |
| 		    i__3 = m - *kb + i__ + k - *ka;
 | |
| 		    i__4 = m - *kb + i__ + k;
 | |
| 		    work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
 | |
| 		}
 | |
| 	    }
 | |
| /* L650: */
 | |
| 	}
 | |
| 
 | |
| 	for (k = *kb; k >= 1; --k) {
 | |
| /* Computing MAX */
 | |
| 	    i__3 = 1, i__4 = k + i0 - m;
 | |
| 	    j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
 | |
| 	    nr = (j2 + *ka - 1) / ka1;
 | |
| 	    j1 = j2 - (nr - 1) * ka1;
 | |
| 	    if (nr > 0) {
 | |
| 
 | |
| /*              generate rotations in 2nd set to annihilate elements */
 | |
| /*              which have been created outside the band */
 | |
| 
 | |
| 		zlargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
 | |
| 			kb + j1], &ka1, &rwork[m - *kb + j1], &ka1);
 | |
| 
 | |
| /*              apply rotations in 2nd set from the left */
 | |
| 
 | |
| 		i__3 = *ka - 1;
 | |
| 		for (l = 1; l <= i__3; ++l) {
 | |
| 		    zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
 | |
| 			    ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[m 
 | |
| 			    - *kb + j1], &work[m - *kb + j1], &ka1);
 | |
| /* L660: */
 | |
| 		}
 | |
| 
 | |
| /*              apply rotations in 2nd set from both sides to diagonal */
 | |
| /*              blocks */
 | |
| 
 | |
| 		zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) * 
 | |
| 			ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[m - *
 | |
| 			kb + j1], &work[m - *kb + j1], &ka1);
 | |
| 
 | |
| 		zlacgv_(&nr, &work[m - *kb + j1], &ka1);
 | |
| 	    }
 | |
| 
 | |
| /*           start applying rotations in 2nd set from the right */
 | |
| 
 | |
| 	    i__3 = *kb - k + 1;
 | |
| 	    for (l = *ka - 1; l >= i__3; --l) {
 | |
| 		nrt = (j2 + l - 1) / ka1;
 | |
| 		j1t = j2 - (nrt - 1) * ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
 | |
| 			    j1t - 1) * ab_dim1], &inca, &rwork[m - *kb + j1t],
 | |
| 			     &work[m - *kb + j1t], &ka1);
 | |
| 		}
 | |
| /* L670: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by product of rotations in 2nd set */
 | |
| 
 | |
| 		i__3 = j2;
 | |
| 		i__4 = ka1;
 | |
| 		for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
 | |
| 		    zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1 
 | |
| 			    + 1], &c__1, &rwork[m - *kb + j], &work[m - *kb + 
 | |
| 			    j]);
 | |
| /* L680: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L690: */
 | |
| 	}
 | |
| 
 | |
| 	i__4 = *kb - 1;
 | |
| 	for (k = 1; k <= i__4; ++k) {
 | |
| /* Computing MAX */
 | |
| 	    i__3 = 1, i__1 = k + i0 - m + 1;
 | |
| 	    j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
 | |
| 
 | |
| /*           finish applying rotations in 1st set from the right */
 | |
| 
 | |
| 	    for (l = *kb - k; l >= 1; --l) {
 | |
| 		nrt = (j2 + l - 1) / ka1;
 | |
| 		j1t = j2 - (nrt - 1) * ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
 | |
| 			    j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
 | |
| 			    j1t], &ka1);
 | |
| 		}
 | |
| /* L700: */
 | |
| 	    }
 | |
| /* L710: */
 | |
| 	}
 | |
| 
 | |
| 	if (*kb > 1) {
 | |
| 	    i__4 = i2 - *ka;
 | |
| 	    for (j = 2; j <= i__4; ++j) {
 | |
| 		rwork[j] = rwork[j + *ka];
 | |
| 		i__3 = j;
 | |
| 		i__1 = j + *ka;
 | |
| 		work[i__3].r = work[i__1].r, work[i__3].i = work[i__1].i;
 | |
| /* L720: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Transform A, working with the lower triangle */
 | |
| 
 | |
| 	if (update) {
 | |
| 
 | |
| /*           Form  inv(S(i))**H * A * inv(S(i)) */
 | |
| 
 | |
| 	    i__4 = i__ * bb_dim1 + 1;
 | |
| 	    bii = bb[i__4].r;
 | |
| 	    i__4 = i__ * ab_dim1 + 1;
 | |
| 	    i__3 = i__ * ab_dim1 + 1;
 | |
| 	    d__1 = ab[i__3].r / bii / bii;
 | |
| 	    ab[i__4].r = d__1, ab[i__4].i = 0.;
 | |
| 	    i__4 = i__ - 1;
 | |
| 	    for (j = i1; j <= i__4; ++j) {
 | |
| 		i__3 = i__ - j + 1 + j * ab_dim1;
 | |
| 		i__1 = i__ - j + 1 + j * ab_dim1;
 | |
| 		z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
 | |
| 		ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
 | |
| /* L730: */
 | |
| 	    }
 | |
| /* Computing MIN */
 | |
| 	    i__3 = *n, i__1 = i__ + *ka;
 | |
| 	    i__4 = f2cmin(i__3,i__1);
 | |
| 	    for (j = i__ + 1; j <= i__4; ++j) {
 | |
| 		i__3 = j - i__ + 1 + i__ * ab_dim1;
 | |
| 		i__1 = j - i__ + 1 + i__ * ab_dim1;
 | |
| 		z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
 | |
| 		ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
 | |
| /* L740: */
 | |
| 	    }
 | |
| 	    i__4 = i__ + kbt;
 | |
| 	    for (k = i__ + 1; k <= i__4; ++k) {
 | |
| 		i__3 = i__ + kbt;
 | |
| 		for (j = k; j <= i__3; ++j) {
 | |
| 		    i__1 = j - k + 1 + k * ab_dim1;
 | |
| 		    i__2 = j - k + 1 + k * ab_dim1;
 | |
| 		    i__5 = j - i__ + 1 + i__ * bb_dim1;
 | |
| 		    d_cnjg(&z__5, &ab[k - i__ + 1 + i__ * ab_dim1]);
 | |
| 		    z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i, 
 | |
| 			    z__4.i = bb[i__5].r * z__5.i + bb[i__5].i * 
 | |
| 			    z__5.r;
 | |
| 		    z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i - 
 | |
| 			    z__4.i;
 | |
| 		    d_cnjg(&z__7, &bb[k - i__ + 1 + i__ * bb_dim1]);
 | |
| 		    i__6 = j - i__ + 1 + i__ * ab_dim1;
 | |
| 		    z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i, 
 | |
| 			    z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
 | |
| 			    .r;
 | |
| 		    z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
 | |
| 		    i__7 = i__ * ab_dim1 + 1;
 | |
| 		    d__1 = ab[i__7].r;
 | |
| 		    i__8 = j - i__ + 1 + i__ * bb_dim1;
 | |
| 		    z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
 | |
| 		    d_cnjg(&z__10, &bb[k - i__ + 1 + i__ * bb_dim1]);
 | |
| 		    z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i = 
 | |
| 			    z__9.r * z__10.i + z__9.i * z__10.r;
 | |
| 		    z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
 | |
| 		    ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L750: */
 | |
| 		}
 | |
| /* Computing MIN */
 | |
| 		i__1 = *n, i__2 = i__ + *ka;
 | |
| 		i__3 = f2cmin(i__1,i__2);
 | |
| 		for (j = i__ + kbt + 1; j <= i__3; ++j) {
 | |
| 		    i__1 = j - k + 1 + k * ab_dim1;
 | |
| 		    i__2 = j - k + 1 + k * ab_dim1;
 | |
| 		    d_cnjg(&z__3, &bb[k - i__ + 1 + i__ * bb_dim1]);
 | |
| 		    i__5 = j - i__ + 1 + i__ * ab_dim1;
 | |
| 		    z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i, 
 | |
| 			    z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
 | |
| 			    .r;
 | |
| 		    z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i - 
 | |
| 			    z__2.i;
 | |
| 		    ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L760: */
 | |
| 		}
 | |
| /* L770: */
 | |
| 	    }
 | |
| 	    i__4 = i__;
 | |
| 	    for (j = i1; j <= i__4; ++j) {
 | |
| /* Computing MIN */
 | |
| 		i__1 = j + *ka, i__2 = i__ + kbt;
 | |
| 		i__3 = f2cmin(i__1,i__2);
 | |
| 		for (k = i__ + 1; k <= i__3; ++k) {
 | |
| 		    i__1 = k - j + 1 + j * ab_dim1;
 | |
| 		    i__2 = k - j + 1 + j * ab_dim1;
 | |
| 		    i__5 = k - i__ + 1 + i__ * bb_dim1;
 | |
| 		    i__6 = i__ - j + 1 + j * ab_dim1;
 | |
| 		    z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
 | |
| 			    .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i 
 | |
| 			    * ab[i__6].r;
 | |
| 		    z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i - 
 | |
| 			    z__2.i;
 | |
| 		    ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L780: */
 | |
| 		}
 | |
| /* L790: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by inv(S(i)) */
 | |
| 
 | |
| 		d__1 = 1. / bii;
 | |
| 		zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
 | |
| 		if (kbt > 0) {
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgerc_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
 | |
| 			    i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1 
 | |
| 			    + 1], ldx);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           store a(i,i1) in RA1 for use in next loop over K */
 | |
| 
 | |
| 	    i__4 = i__ - i1 + 1 + i1 * ab_dim1;
 | |
| 	    ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
 | |
| 	}
 | |
| 
 | |
| /*        Generate and apply vectors of rotations to chase all the */
 | |
| /*        existing bulges KA positions up toward the top of the band */
 | |
| 
 | |
| 	i__4 = *kb - 1;
 | |
| 	for (k = 1; k <= i__4; ++k) {
 | |
| 	    if (update) {
 | |
| 
 | |
| /*              Determine the rotations which would annihilate the bulge */
 | |
| /*              which has in theory just been created */
 | |
| 
 | |
| 		if (i__ + k - ka1 > 0 && i__ + k < m) {
 | |
| 
 | |
| /*                 generate rotation to annihilate a(i,i+k-ka-1) */
 | |
| 
 | |
| 		    zlartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
 | |
| 			    rwork[i__ + k - *ka], &work[i__ + k - *ka], &ra);
 | |
| 
 | |
| /*                 create nonzero element a(i+k,i+k-ka-1) outside the */
 | |
| /*                 band and store it in WORK(m-kb+i+k) */
 | |
| 
 | |
| 		    i__3 = k + 1 + i__ * bb_dim1;
 | |
| 		    z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
 | |
| 		    z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r 
 | |
| 			    * ra1.i + z__2.i * ra1.r;
 | |
| 		    t.r = z__1.r, t.i = z__1.i;
 | |
| 		    i__3 = m - *kb + i__ + k;
 | |
| 		    i__1 = i__ + k - *ka;
 | |
| 		    z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
 | |
| 		    d_cnjg(&z__4, &work[i__ + k - *ka]);
 | |
| 		    i__2 = ka1 + (i__ + k - *ka) * ab_dim1;
 | |
| 		    z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i, 
 | |
| 			    z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
 | |
| 			    .r;
 | |
| 		    z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
| 		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
 | |
| 		    i__3 = ka1 + (i__ + k - *ka) * ab_dim1;
 | |
| 		    i__1 = i__ + k - *ka;
 | |
| 		    z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
 | |
| 			     work[i__1].r * t.i + work[i__1].i * t.r;
 | |
| 		    i__2 = i__ + k - *ka;
 | |
| 		    i__5 = ka1 + (i__ + k - *ka) * ab_dim1;
 | |
| 		    z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] * 
 | |
| 			    ab[i__5].i;
 | |
| 		    z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
 | |
| 		    ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
 | |
| 		    ra1.r = ra.r, ra1.i = ra.i;
 | |
| 		}
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    i__3 = 1, i__1 = k + i0 - m + 1;
 | |
| 	    j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
 | |
| 	    nr = (j2 + *ka - 1) / ka1;
 | |
| 	    j1 = j2 - (nr - 1) * ka1;
 | |
| 	    if (update) {
 | |
| /* Computing MIN */
 | |
| 		i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
 | |
| 		j2t = f2cmin(i__3,i__1);
 | |
| 	    } else {
 | |
| 		j2t = j2;
 | |
| 	    }
 | |
| 	    nrt = (j2t + *ka - 1) / ka1;
 | |
| 	    i__3 = j2t;
 | |
| 	    i__1 = ka1;
 | |
| 	    for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
 | |
| 
 | |
| /*              create nonzero element a(j+ka,j-1) outside the band */
 | |
| /*              and store it in WORK(j) */
 | |
| 
 | |
| 		i__2 = j;
 | |
| 		i__5 = j;
 | |
| 		i__6 = ka1 + (j - 1) * ab_dim1;
 | |
| 		z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
 | |
| 			.i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i 
 | |
| 			* ab[i__6].r;
 | |
| 		work[i__2].r = z__1.r, work[i__2].i = z__1.i;
 | |
| 		i__2 = ka1 + (j - 1) * ab_dim1;
 | |
| 		i__5 = j;
 | |
| 		i__6 = ka1 + (j - 1) * ab_dim1;
 | |
| 		z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
 | |
| 			i__6].i;
 | |
| 		ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| /* L800: */
 | |
| 	    }
 | |
| 
 | |
| /*           generate rotations in 1st set to annihilate elements which */
 | |
| /*           have been created outside the band */
 | |
| 
 | |
| 	    if (nrt > 0) {
 | |
| 		zlargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
 | |
| 			 &rwork[j1], &ka1);
 | |
| 	    }
 | |
| 	    if (nr > 0) {
 | |
| 
 | |
| /*              apply rotations in 1st set from the right */
 | |
| 
 | |
| 		i__1 = *ka - 1;
 | |
| 		for (l = 1; l <= i__1; ++l) {
 | |
| 		    zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2 
 | |
| 			    + (j1 - 1) * ab_dim1], &inca, &rwork[j1], &work[
 | |
| 			    j1], &ka1);
 | |
| /* L810: */
 | |
| 		}
 | |
| 
 | |
| /*              apply rotations in 1st set from both sides to diagonal */
 | |
| /*              blocks */
 | |
| 
 | |
| 		zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 
 | |
| 			1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[j1], &
 | |
| 			work[j1], &ka1);
 | |
| 
 | |
| 		zlacgv_(&nr, &work[j1], &ka1);
 | |
| 	    }
 | |
| 
 | |
| /*           start applying rotations in 1st set from the left */
 | |
| 
 | |
| 	    i__1 = *kb - k + 1;
 | |
| 	    for (l = *ka - 1; l >= i__1; --l) {
 | |
| 		nrt = (j2 + l - 1) / ka1;
 | |
| 		j1t = j2 - (nrt - 1) * ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
 | |
| 			    , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
 | |
| 			     &inca, &rwork[j1t], &work[j1t], &ka1);
 | |
| 		}
 | |
| /* L820: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by product of rotations in 1st set */
 | |
| 
 | |
| 		i__1 = j2;
 | |
| 		i__3 = ka1;
 | |
| 		for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
 | |
| 		    d_cnjg(&z__1, &work[j]);
 | |
| 		    zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1 
 | |
| 			    + 1], &c__1, &rwork[j], &z__1);
 | |
| /* L830: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L840: */
 | |
| 	}
 | |
| 
 | |
| 	if (update) {
 | |
| 	    if (i2 > 0 && kbt > 0) {
 | |
| 
 | |
| /*              create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
 | |
| /*              band and store it in WORK(m-kb+i+kbt) */
 | |
| 
 | |
| 		i__4 = m - *kb + i__ + kbt;
 | |
| 		i__3 = kbt + 1 + i__ * bb_dim1;
 | |
| 		z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
 | |
| 		z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r * 
 | |
| 			ra1.i + z__2.i * ra1.r;
 | |
| 		work[i__4].r = z__1.r, work[i__4].i = z__1.i;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	for (k = *kb; k >= 1; --k) {
 | |
| 	    if (update) {
 | |
| /* Computing MAX */
 | |
| 		i__4 = 2, i__3 = k + i0 - m;
 | |
| 		j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
 | |
| 	    } else {
 | |
| /* Computing MAX */
 | |
| 		i__4 = 1, i__3 = k + i0 - m;
 | |
| 		j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
 | |
| 	    }
 | |
| 
 | |
| /*           finish applying rotations in 2nd set from the left */
 | |
| 
 | |
| 	    for (l = *kb - k; l >= 1; --l) {
 | |
| 		nrt = (j2 + *ka + l - 1) / ka1;
 | |
| 		j1t = j2 - (nrt - 1) * ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1], 
 | |
| 			    &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
 | |
| 			    inca, &rwork[m - *kb + j1t + *ka], &work[m - *kb 
 | |
| 			    + j1t + *ka], &ka1);
 | |
| 		}
 | |
| /* L850: */
 | |
| 	    }
 | |
| 	    nr = (j2 + *ka - 1) / ka1;
 | |
| 	    j1 = j2 - (nr - 1) * ka1;
 | |
| 	    i__4 = j2;
 | |
| 	    i__3 = ka1;
 | |
| 	    for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
 | |
| 		i__1 = m - *kb + j;
 | |
| 		i__2 = m - *kb + j + *ka;
 | |
| 		work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
 | |
| 		rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
 | |
| /* L860: */
 | |
| 	    }
 | |
| 	    i__3 = j2;
 | |
| 	    i__4 = ka1;
 | |
| 	    for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
 | |
| 
 | |
| /*              create nonzero element a(j+ka,j-1) outside the band */
 | |
| /*              and store it in WORK(m-kb+j) */
 | |
| 
 | |
| 		i__1 = m - *kb + j;
 | |
| 		i__2 = m - *kb + j;
 | |
| 		i__5 = ka1 + (j - 1) * ab_dim1;
 | |
| 		z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
 | |
| 			.i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i 
 | |
| 			* ab[i__5].r;
 | |
| 		work[i__1].r = z__1.r, work[i__1].i = z__1.i;
 | |
| 		i__1 = ka1 + (j - 1) * ab_dim1;
 | |
| 		i__2 = m - *kb + j;
 | |
| 		i__5 = ka1 + (j - 1) * ab_dim1;
 | |
| 		z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
 | |
| 			i__5].i;
 | |
| 		ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| /* L870: */
 | |
| 	    }
 | |
| 	    if (update) {
 | |
| 		if (i__ + k > ka1 && k <= kbt) {
 | |
| 		    i__4 = m - *kb + i__ + k - *ka;
 | |
| 		    i__3 = m - *kb + i__ + k;
 | |
| 		    work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
 | |
| 		}
 | |
| 	    }
 | |
| /* L880: */
 | |
| 	}
 | |
| 
 | |
| 	for (k = *kb; k >= 1; --k) {
 | |
| /* Computing MAX */
 | |
| 	    i__4 = 1, i__3 = k + i0 - m;
 | |
| 	    j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
 | |
| 	    nr = (j2 + *ka - 1) / ka1;
 | |
| 	    j1 = j2 - (nr - 1) * ka1;
 | |
| 	    if (nr > 0) {
 | |
| 
 | |
| /*              generate rotations in 2nd set to annihilate elements */
 | |
| /*              which have been created outside the band */
 | |
| 
 | |
| 		zlargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb + 
 | |
| 			j1], &ka1, &rwork[m - *kb + j1], &ka1);
 | |
| 
 | |
| /*              apply rotations in 2nd set from the right */
 | |
| 
 | |
| 		i__4 = *ka - 1;
 | |
| 		for (l = 1; l <= i__4; ++l) {
 | |
| 		    zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2 
 | |
| 			    + (j1 - 1) * ab_dim1], &inca, &rwork[m - *kb + j1]
 | |
| 			    , &work[m - *kb + j1], &ka1);
 | |
| /* L890: */
 | |
| 		}
 | |
| 
 | |
| /*              apply rotations in 2nd set from both sides to diagonal */
 | |
| /*              blocks */
 | |
| 
 | |
| 		zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 
 | |
| 			1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[m - *
 | |
| 			kb + j1], &work[m - *kb + j1], &ka1);
 | |
| 
 | |
| 		zlacgv_(&nr, &work[m - *kb + j1], &ka1);
 | |
| 	    }
 | |
| 
 | |
| /*           start applying rotations in 2nd set from the left */
 | |
| 
 | |
| 	    i__4 = *kb - k + 1;
 | |
| 	    for (l = *ka - 1; l >= i__4; --l) {
 | |
| 		nrt = (j2 + l - 1) / ka1;
 | |
| 		j1t = j2 - (nrt - 1) * ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
 | |
| 			    , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
 | |
| 			     &inca, &rwork[m - *kb + j1t], &work[m - *kb + 
 | |
| 			    j1t], &ka1);
 | |
| 		}
 | |
| /* L900: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (wantx) {
 | |
| 
 | |
| /*              post-multiply X by product of rotations in 2nd set */
 | |
| 
 | |
| 		i__4 = j2;
 | |
| 		i__3 = ka1;
 | |
| 		for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
 | |
| 		    d_cnjg(&z__1, &work[m - *kb + j]);
 | |
| 		    zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1 
 | |
| 			    + 1], &c__1, &rwork[m - *kb + j], &z__1);
 | |
| /* L910: */
 | |
| 		}
 | |
| 	    }
 | |
| /* L920: */
 | |
| 	}
 | |
| 
 | |
| 	i__3 = *kb - 1;
 | |
| 	for (k = 1; k <= i__3; ++k) {
 | |
| /* Computing MAX */
 | |
| 	    i__4 = 1, i__1 = k + i0 - m + 1;
 | |
| 	    j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
 | |
| 
 | |
| /*           finish applying rotations in 1st set from the left */
 | |
| 
 | |
| 	    for (l = *kb - k; l >= 1; --l) {
 | |
| 		nrt = (j2 + l - 1) / ka1;
 | |
| 		j1t = j2 - (nrt - 1) * ka1;
 | |
| 		if (nrt > 0) {
 | |
| 		    zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
 | |
| 			    , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
 | |
| 			     &inca, &rwork[j1t], &work[j1t], &ka1);
 | |
| 		}
 | |
| /* L930: */
 | |
| 	    }
 | |
| /* L940: */
 | |
| 	}
 | |
| 
 | |
| 	if (*kb > 1) {
 | |
| 	    i__3 = i2 - *ka;
 | |
| 	    for (j = 2; j <= i__3; ++j) {
 | |
| 		rwork[j] = rwork[j + *ka];
 | |
| 		i__4 = j;
 | |
| 		i__1 = j + *ka;
 | |
| 		work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
 | |
| /* L950: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
|     goto L490;
 | |
| 
 | |
| /*     End of ZHBGST */
 | |
| 
 | |
| } /* zhbgst_ */
 | |
| 
 |