312 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAUNHR_COL_GETRFNP2
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLAUNHR_COL_GETRFNP2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claunhr_col_getrfnp2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claunhr_col_getrfnp2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claunhr_col_getrfnp2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       RECURSIVE SUBROUTINE CLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            A( LDA, * ), D( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLAUNHR_COL_GETRFNP2 computes the modified LU factorization without
 | |
| *> pivoting of a complex general M-by-N matrix A. The factorization has
 | |
| *> the form:
 | |
| *>
 | |
| *>     A - S = L * U,
 | |
| *>
 | |
| *> where:
 | |
| *>    S is a m-by-n diagonal sign matrix with the diagonal D, so that
 | |
| *>    D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
 | |
| *>    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
 | |
| *>    i-1 steps of Gaussian elimination. This means that the diagonal
 | |
| *>    element at each step of "modified" Gaussian elimination is at
 | |
| *>    least one in absolute value (so that division-by-zero not
 | |
| *>    possible during the division by the diagonal element);
 | |
| *>
 | |
| *>    L is a M-by-N lower triangular matrix with unit diagonal elements
 | |
| *>    (lower trapezoidal if M > N);
 | |
| *>
 | |
| *>    and U is a M-by-N upper triangular matrix
 | |
| *>    (upper trapezoidal if M < N).
 | |
| *>
 | |
| *> This routine is an auxiliary routine used in the Householder
 | |
| *> reconstruction routine CUNHR_COL. In CUNHR_COL, this routine is
 | |
| *> applied to an M-by-N matrix A with orthonormal columns, where each
 | |
| *> element is bounded by one in absolute value. With the choice of
 | |
| *> the matrix S above, one can show that the diagonal element at each
 | |
| *> step of Gaussian elimination is the largest (in absolute value) in
 | |
| *> the column on or below the diagonal, so that no pivoting is required
 | |
| *> for numerical stability [1].
 | |
| *>
 | |
| *> For more details on the Householder reconstruction algorithm,
 | |
| *> including the modified LU factorization, see [1].
 | |
| *>
 | |
| *> This is the recursive version of the LU factorization algorithm.
 | |
| *> Denote A - S by B. The algorithm divides the matrix B into four
 | |
| *> submatrices:
 | |
| *>
 | |
| *>        [  B11 | B12  ]  where B11 is n1 by n1,
 | |
| *>    B = [ -----|----- ]        B21 is (m-n1) by n1,
 | |
| *>        [  B21 | B22  ]        B12 is n1 by n2,
 | |
| *>                               B22 is (m-n1) by n2,
 | |
| *>                               with n1 = min(m,n)/2, n2 = n-n1.
 | |
| *>
 | |
| *>
 | |
| *> The subroutine calls itself to factor B11, solves for B21,
 | |
| *> solves for B12, updates B22, then calls itself to factor B22.
 | |
| *>
 | |
| *> For more details on the recursive LU algorithm, see [2].
 | |
| *>
 | |
| *> CLAUNHR_COL_GETRFNP2 is called to factorize a block by the blocked
 | |
| *> routine CLAUNHR_COL_GETRFNP, which uses blocked code calling
 | |
| *> Level 3 BLAS to update the submatrix. However, CLAUNHR_COL_GETRFNP2
 | |
| *> is self-sufficient and can be used without CLAUNHR_COL_GETRFNP.
 | |
| *>
 | |
| *> [1] "Reconstructing Householder vectors from tall-skinny QR",
 | |
| *>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
 | |
| *>     E. Solomonik, J. Parallel Distrib. Comput.,
 | |
| *>     vol. 85, pp. 3-31, 2015.
 | |
| *>
 | |
| *> [2] "Recursion leads to automatic variable blocking for dense linear
 | |
| *>     algebra algorithms", F. Gustavson, IBM J. of Res. and Dev.,
 | |
| *>     vol. 41, no. 6, pp. 737-755, 1997.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix to be factored.
 | |
| *>          On exit, the factors L and U from the factorization
 | |
| *>          A-S=L*U; the unit diagonal elements of L are not stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is COMPLEX array, dimension min(M,N)
 | |
| *>          The diagonal elements of the diagonal M-by-N sign matrix S,
 | |
| *>          D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can be
 | |
| *>          only ( +1.0, 0.0 ) or (-1.0, 0.0 ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexGEcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> November 2019, Igor Kozachenko,
 | |
| *>                Computer Science Division,
 | |
| *>                University of California, Berkeley
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       RECURSIVE SUBROUTINE CLAUNHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX         A( LDA, * ), D( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               SFMIN
 | |
|       INTEGER            I, IINFO, N1, N2
 | |
|       COMPLEX            Z
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM, CSCAL, CTRSM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, REAL, CMPLX, AIMAG, SIGN, MAX, MIN
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       DOUBLE PRECISION   CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( Z ) = ABS( REAL( Z ) ) + ABS( AIMAG( Z ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CLAUNHR_COL_GETRFNP2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N ).EQ.0 )
 | |
|      $   RETURN
 | |
| 
 | |
|       IF ( M.EQ.1 ) THEN
 | |
| *
 | |
| *        One row case, (also recursion termination case),
 | |
| *        use unblocked code
 | |
| *
 | |
| *        Transfer the sign
 | |
| *
 | |
|          D( 1 ) = CMPLX( -SIGN( ONE, REAL( A( 1, 1 ) ) ) )
 | |
| *
 | |
| *        Construct the row of U
 | |
| *
 | |
|          A( 1, 1 ) = A( 1, 1 ) - D( 1 )
 | |
| *
 | |
|       ELSE IF( N.EQ.1 ) THEN
 | |
| *
 | |
| *        One column case, (also recursion termination case),
 | |
| *        use unblocked code
 | |
| *
 | |
| *        Transfer the sign
 | |
| *
 | |
|          D( 1 ) = CMPLX( -SIGN( ONE, REAL( A( 1, 1 ) ) ) )
 | |
| *
 | |
| *        Construct the row of U
 | |
| *
 | |
|          A( 1, 1 ) = A( 1, 1 ) - D( 1 )
 | |
| *
 | |
| *        Scale the elements 2:M of the column
 | |
| *
 | |
| *        Determine machine safe minimum
 | |
| *
 | |
|          SFMIN = SLAMCH('S')
 | |
| *
 | |
| *        Construct the subdiagonal elements of L
 | |
| *
 | |
|          IF( CABS1( A( 1, 1 ) ) .GE. SFMIN ) THEN
 | |
|             CALL CSCAL( M-1, CONE / A( 1, 1 ), A( 2, 1 ), 1 )
 | |
|          ELSE
 | |
|             DO I = 2, M
 | |
|                A( I, 1 ) = A( I, 1 ) / A( 1, 1 )
 | |
|             END DO
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Divide the matrix B into four submatrices
 | |
| *
 | |
|          N1 = MIN( M, N ) / 2
 | |
|          N2 = N-N1
 | |
| 
 | |
| *
 | |
| *        Factor B11, recursive call
 | |
| *
 | |
|          CALL CLAUNHR_COL_GETRFNP2( N1, N1, A, LDA, D, IINFO )
 | |
| *
 | |
| *        Solve for B21
 | |
| *
 | |
|          CALL CTRSM( 'R', 'U', 'N', 'N', M-N1, N1, CONE, A, LDA,
 | |
|      $               A( N1+1, 1 ), LDA )
 | |
| *
 | |
| *        Solve for B12
 | |
| *
 | |
|          CALL CTRSM( 'L', 'L', 'N', 'U', N1, N2, CONE, A, LDA,
 | |
|      $               A( 1, N1+1 ), LDA )
 | |
| *
 | |
| *        Update B22, i.e. compute the Schur complement
 | |
| *        B22 := B22 - B21*B12
 | |
| *
 | |
|          CALL CGEMM( 'N', 'N', M-N1, N2, N1, -CONE, A( N1+1, 1 ), LDA,
 | |
|      $               A( 1, N1+1 ), LDA, CONE, A( N1+1, N1+1 ), LDA )
 | |
| *
 | |
| *        Factor B22, recursive call
 | |
| *
 | |
|          CALL CLAUNHR_COL_GETRFNP2( M-N1, N2, A( N1+1, N1+1 ), LDA,
 | |
|      $                              D( N1+1 ), IINFO )
 | |
| *
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAUNHR_COL_GETRFNP2
 | |
| *
 | |
|       END
 |