327 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			327 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLARFT forms the triangular factor T of a block reflector H = I - vtvH
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLARFT + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarft.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarft.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarft.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIRECT, STOREV
 | 
						|
*       INTEGER            K, LDT, LDV, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               T( LDT, * ), TAU( * ), V( LDV, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLARFT forms the triangular factor T of a real block reflector H
 | 
						|
*> of order n, which is defined as a product of k elementary reflectors.
 | 
						|
*>
 | 
						|
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
 | 
						|
*>
 | 
						|
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
 | 
						|
*>
 | 
						|
*> If STOREV = 'C', the vector which defines the elementary reflector
 | 
						|
*> H(i) is stored in the i-th column of the array V, and
 | 
						|
*>
 | 
						|
*>    H  =  I - V * T * V**T
 | 
						|
*>
 | 
						|
*> If STOREV = 'R', the vector which defines the elementary reflector
 | 
						|
*> H(i) is stored in the i-th row of the array V, and
 | 
						|
*>
 | 
						|
*>    H  =  I - V**T * T * V
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] DIRECT
 | 
						|
*> \verbatim
 | 
						|
*>          DIRECT is CHARACTER*1
 | 
						|
*>          Specifies the order in which the elementary reflectors are
 | 
						|
*>          multiplied to form the block reflector:
 | 
						|
*>          = 'F': H = H(1) H(2) . . . H(k) (Forward)
 | 
						|
*>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] STOREV
 | 
						|
*> \verbatim
 | 
						|
*>          STOREV is CHARACTER*1
 | 
						|
*>          Specifies how the vectors which define the elementary
 | 
						|
*>          reflectors are stored (see also Further Details):
 | 
						|
*>          = 'C': columnwise
 | 
						|
*>          = 'R': rowwise
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the block reflector H. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The order of the triangular factor T (= the number of
 | 
						|
*>          elementary reflectors). K >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is REAL array, dimension
 | 
						|
*>                               (LDV,K) if STOREV = 'C'
 | 
						|
*>                               (LDV,N) if STOREV = 'R'
 | 
						|
*>          The matrix V. See further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of the array V.
 | 
						|
*>          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is REAL array, dimension (K)
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is REAL array, dimension (LDT,K)
 | 
						|
*>          The k by k triangular factor T of the block reflector.
 | 
						|
*>          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
 | 
						|
*>          lower triangular. The rest of the array is not used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T. LDT >= K.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup realOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The shape of the matrix V and the storage of the vectors which define
 | 
						|
*>  the H(i) is best illustrated by the following example with n = 5 and
 | 
						|
*>  k = 3. The elements equal to 1 are not stored.
 | 
						|
*>
 | 
						|
*>  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
 | 
						|
*>
 | 
						|
*>               V = (  1       )                 V = (  1 v1 v1 v1 v1 )
 | 
						|
*>                   ( v1  1    )                     (     1 v2 v2 v2 )
 | 
						|
*>                   ( v1 v2  1 )                     (        1 v3 v3 )
 | 
						|
*>                   ( v1 v2 v3 )
 | 
						|
*>                   ( v1 v2 v3 )
 | 
						|
*>
 | 
						|
*>  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
 | 
						|
*>
 | 
						|
*>               V = ( v1 v2 v3 )                 V = ( v1 v1  1       )
 | 
						|
*>                   ( v1 v2 v3 )                     ( v2 v2 v2  1    )
 | 
						|
*>                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 )
 | 
						|
*>                   (     1 v3 )
 | 
						|
*>                   (        1 )
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIRECT, STOREV
 | 
						|
      INTEGER            K, LDT, LDV, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               T( LDT, * ), TAU( * ), V( LDV, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, PREVLASTV, LASTV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMV, STRMV
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( LSAME( DIRECT, 'F' ) ) THEN
 | 
						|
         PREVLASTV = N
 | 
						|
         DO I = 1, K
 | 
						|
            PREVLASTV = MAX( I, PREVLASTV )
 | 
						|
            IF( TAU( I ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*              H(i)  =  I
 | 
						|
*
 | 
						|
               DO J = 1, I
 | 
						|
                  T( J, I ) = ZERO
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              general case
 | 
						|
*
 | 
						|
               IF( LSAME( STOREV, 'C' ) ) THEN
 | 
						|
*                 Skip any trailing zeros.
 | 
						|
                  DO LASTV = N, I+1, -1
 | 
						|
                     IF( V( LASTV, I ).NE.ZERO ) EXIT
 | 
						|
                  END DO
 | 
						|
                  DO J = 1, I-1
 | 
						|
                     T( J, I ) = -TAU( I ) * V( I , J )
 | 
						|
                  END DO   
 | 
						|
                  J = MIN( LASTV, PREVLASTV )
 | 
						|
*
 | 
						|
*                 T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
 | 
						|
*
 | 
						|
                  CALL SGEMV( 'Transpose', J-I, I-1, -TAU( I ),
 | 
						|
     $                        V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE,
 | 
						|
     $                        T( 1, I ), 1 )
 | 
						|
               ELSE
 | 
						|
*                 Skip any trailing zeros.
 | 
						|
                  DO LASTV = N, I+1, -1
 | 
						|
                     IF( V( I, LASTV ).NE.ZERO ) EXIT
 | 
						|
                  END DO
 | 
						|
                  DO J = 1, I-1
 | 
						|
                     T( J, I ) = -TAU( I ) * V( J , I )
 | 
						|
                  END DO   
 | 
						|
                  J = MIN( LASTV, PREVLASTV )
 | 
						|
*
 | 
						|
*                 T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
 | 
						|
*
 | 
						|
                  CALL SGEMV( 'No transpose', I-1, J-I, -TAU( I ),
 | 
						|
     $                        V( 1, I+1 ), LDV, V( I, I+1 ), LDV, 
 | 
						|
     $                        ONE, T( 1, I ), 1 )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
 | 
						|
*
 | 
						|
               CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
 | 
						|
     $                     LDT, T( 1, I ), 1 )
 | 
						|
               T( I, I ) = TAU( I )
 | 
						|
               IF( I.GT.1 ) THEN
 | 
						|
                  PREVLASTV = MAX( PREVLASTV, LASTV )
 | 
						|
               ELSE
 | 
						|
                  PREVLASTV = LASTV
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         PREVLASTV = 1
 | 
						|
         DO I = K, 1, -1
 | 
						|
            IF( TAU( I ).EQ.ZERO ) THEN
 | 
						|
*
 | 
						|
*              H(i)  =  I
 | 
						|
*
 | 
						|
               DO J = I, K
 | 
						|
                  T( J, I ) = ZERO
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              general case
 | 
						|
*
 | 
						|
               IF( I.LT.K ) THEN
 | 
						|
                  IF( LSAME( STOREV, 'C' ) ) THEN
 | 
						|
*                    Skip any leading zeros.
 | 
						|
                     DO LASTV = 1, I-1
 | 
						|
                        IF( V( LASTV, I ).NE.ZERO ) EXIT
 | 
						|
                     END DO
 | 
						|
                     DO J = I+1, K
 | 
						|
                        T( J, I ) = -TAU( I ) * V( N-K+I , J )
 | 
						|
                     END DO   
 | 
						|
                     J = MAX( LASTV, PREVLASTV )
 | 
						|
*
 | 
						|
*                    T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
 | 
						|
*
 | 
						|
                     CALL SGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ),
 | 
						|
     $                           V( J, I+1 ), LDV, V( J, I ), 1, ONE,
 | 
						|
     $                           T( I+1, I ), 1 )
 | 
						|
                  ELSE
 | 
						|
*                    Skip any leading zeros.
 | 
						|
                     DO LASTV = 1, I-1
 | 
						|
                        IF( V( I, LASTV ).NE.ZERO ) EXIT
 | 
						|
                     END DO
 | 
						|
                     DO J = I+1, K
 | 
						|
                        T( J, I ) = -TAU( I ) * V( J, N-K+I )
 | 
						|
                     END DO   
 | 
						|
                     J = MAX( LASTV, PREVLASTV )
 | 
						|
*
 | 
						|
*                    T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
 | 
						|
*
 | 
						|
                     CALL SGEMV( 'No transpose', K-I, N-K+I-J,
 | 
						|
     $                    -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV,
 | 
						|
     $                    ONE, T( I+1, I ), 1 )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
*                 T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
 | 
						|
*
 | 
						|
                  CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
 | 
						|
     $                        T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
 | 
						|
                  IF( I.GT.1 ) THEN
 | 
						|
                     PREVLASTV = MIN( PREVLASTV, LASTV )
 | 
						|
                  ELSE
 | 
						|
                     PREVLASTV = LASTV
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
               T( I, I ) = TAU( I )
 | 
						|
            END IF
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLARFT
 | 
						|
*
 | 
						|
      END
 |