408 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			408 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAED7 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is dense.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLAED7 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed7.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed7.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed7.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
 | 
						|
*                          LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
 | 
						|
*                          PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
 | 
						|
*                          INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
 | 
						|
*      $                   QSIZ, TLVLS
 | 
						|
*       DOUBLE PRECISION   RHO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
 | 
						|
*      $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
 | 
						|
*       DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
 | 
						|
*      $                   QSTORE( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLAED7 computes the updated eigensystem of a diagonal
 | 
						|
*> matrix after modification by a rank-one symmetric matrix. This
 | 
						|
*> routine is used only for the eigenproblem which requires all
 | 
						|
*> eigenvalues and optionally eigenvectors of a dense symmetric matrix
 | 
						|
*> that has been reduced to tridiagonal form.  DLAED1 handles
 | 
						|
*> the case in which all eigenvalues and eigenvectors of a symmetric
 | 
						|
*> tridiagonal matrix are desired.
 | 
						|
*>
 | 
						|
*>   T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
 | 
						|
*>
 | 
						|
*>    where Z = Q**Tu, u is a vector of length N with ones in the
 | 
						|
*>    CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
 | 
						|
*>
 | 
						|
*>    The eigenvectors of the original matrix are stored in Q, and the
 | 
						|
*>    eigenvalues are in D.  The algorithm consists of three stages:
 | 
						|
*>
 | 
						|
*>       The first stage consists of deflating the size of the problem
 | 
						|
*>       when there are multiple eigenvalues or if there is a zero in
 | 
						|
*>       the Z vector.  For each such occurence the dimension of the
 | 
						|
*>       secular equation problem is reduced by one.  This stage is
 | 
						|
*>       performed by the routine DLAED8.
 | 
						|
*>
 | 
						|
*>       The second stage consists of calculating the updated
 | 
						|
*>       eigenvalues. This is done by finding the roots of the secular
 | 
						|
*>       equation via the routine DLAED4 (as called by DLAED9).
 | 
						|
*>       This routine also calculates the eigenvectors of the current
 | 
						|
*>       problem.
 | 
						|
*>
 | 
						|
*>       The final stage consists of computing the updated eigenvectors
 | 
						|
*>       directly using the updated eigenvalues.  The eigenvectors for
 | 
						|
*>       the current problem are multiplied with the eigenvectors from
 | 
						|
*>       the overall problem.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ICOMPQ
 | 
						|
*> \verbatim
 | 
						|
*>          ICOMPQ is INTEGER
 | 
						|
*>          = 0:  Compute eigenvalues only.
 | 
						|
*>          = 1:  Compute eigenvectors of original dense symmetric matrix
 | 
						|
*>                also.  On entry, Q contains the orthogonal matrix used
 | 
						|
*>                to reduce the original matrix to tridiagonal form.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] QSIZ
 | 
						|
*> \verbatim
 | 
						|
*>          QSIZ is INTEGER
 | 
						|
*>         The dimension of the orthogonal matrix used to reduce
 | 
						|
*>         the full matrix to tridiagonal form.  QSIZ >= N if ICOMPQ = 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TLVLS
 | 
						|
*> \verbatim
 | 
						|
*>          TLVLS is INTEGER
 | 
						|
*>         The total number of merging levels in the overall divide and
 | 
						|
*>         conquer tree.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CURLVL
 | 
						|
*> \verbatim
 | 
						|
*>          CURLVL is INTEGER
 | 
						|
*>         The current level in the overall merge routine,
 | 
						|
*>         0 <= CURLVL <= TLVLS.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CURPBM
 | 
						|
*> \verbatim
 | 
						|
*>          CURPBM is INTEGER
 | 
						|
*>         The current problem in the current level in the overall
 | 
						|
*>         merge routine (counting from upper left to lower right).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>         On entry, the eigenvalues of the rank-1-perturbed matrix.
 | 
						|
*>         On exit, the eigenvalues of the repaired matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
 | 
						|
*>         On entry, the eigenvectors of the rank-1-perturbed matrix.
 | 
						|
*>         On exit, the eigenvectors of the repaired tridiagonal matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>         The leading dimension of the array Q.  LDQ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INDXQ
 | 
						|
*> \verbatim
 | 
						|
*>          INDXQ is INTEGER array, dimension (N)
 | 
						|
*>         The permutation which will reintegrate the subproblem just
 | 
						|
*>         solved back into sorted order, i.e., D( INDXQ( I = 1, N ) )
 | 
						|
*>         will be in ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RHO
 | 
						|
*> \verbatim
 | 
						|
*>          RHO is DOUBLE PRECISION
 | 
						|
*>         The subdiagonal element used to create the rank-1
 | 
						|
*>         modification.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CUTPNT
 | 
						|
*> \verbatim
 | 
						|
*>          CUTPNT is INTEGER
 | 
						|
*>         Contains the location of the last eigenvalue in the leading
 | 
						|
*>         sub-matrix.  min(1,N) <= CUTPNT <= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] QSTORE
 | 
						|
*> \verbatim
 | 
						|
*>          QSTORE is DOUBLE PRECISION array, dimension (N**2+1)
 | 
						|
*>         Stores eigenvectors of submatrices encountered during
 | 
						|
*>         divide and conquer, packed together. QPTR points to
 | 
						|
*>         beginning of the submatrices.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] QPTR
 | 
						|
*> \verbatim
 | 
						|
*>          QPTR is INTEGER array, dimension (N+2)
 | 
						|
*>         List of indices pointing to beginning of submatrices stored
 | 
						|
*>         in QSTORE. The submatrices are numbered starting at the
 | 
						|
*>         bottom left of the divide and conquer tree, from left to
 | 
						|
*>         right and bottom to top.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PRMPTR
 | 
						|
*> \verbatim
 | 
						|
*>          PRMPTR is INTEGER array, dimension (N lg N)
 | 
						|
*>         Contains a list of pointers which indicate where in PERM a
 | 
						|
*>         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i)
 | 
						|
*>         indicates the size of the permutation and also the size of
 | 
						|
*>         the full, non-deflated problem.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PERM
 | 
						|
*> \verbatim
 | 
						|
*>          PERM is INTEGER array, dimension (N lg N)
 | 
						|
*>         Contains the permutations (from deflation and sorting) to be
 | 
						|
*>         applied to each eigenblock.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GIVPTR
 | 
						|
*> \verbatim
 | 
						|
*>          GIVPTR is INTEGER array, dimension (N lg N)
 | 
						|
*>         Contains a list of pointers which indicate where in GIVCOL a
 | 
						|
*>         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i)
 | 
						|
*>         indicates the number of Givens rotations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GIVCOL
 | 
						|
*> \verbatim
 | 
						|
*>          GIVCOL is INTEGER array, dimension (2, N lg N)
 | 
						|
*>         Each pair of numbers indicates a pair of columns to take place
 | 
						|
*>         in a Givens rotation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GIVNUM
 | 
						|
*> \verbatim
 | 
						|
*>          GIVNUM is DOUBLE PRECISION array, dimension (2, N lg N)
 | 
						|
*>         Each number indicates the S value to be used in the
 | 
						|
*>         corresponding Givens rotation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (3*N+2*QSIZ*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (4*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = 1, an eigenvalue did not converge
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Jeff Rutter, Computer Science Division, University of California
 | 
						|
*> at Berkeley, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAED7( ICOMPQ, N, QSIZ, TLVLS, CURLVL, CURPBM, D, Q,
 | 
						|
     $                   LDQ, INDXQ, RHO, CUTPNT, QSTORE, QPTR, PRMPTR,
 | 
						|
     $                   PERM, GIVPTR, GIVCOL, GIVNUM, WORK, IWORK,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            CURLVL, CURPBM, CUTPNT, ICOMPQ, INFO, LDQ, N,
 | 
						|
     $                   QSIZ, TLVLS
 | 
						|
      DOUBLE PRECISION   RHO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            GIVCOL( 2, * ), GIVPTR( * ), INDXQ( * ),
 | 
						|
     $                   IWORK( * ), PERM( * ), PRMPTR( * ), QPTR( * )
 | 
						|
      DOUBLE PRECISION   D( * ), GIVNUM( 2, * ), Q( LDQ, * ),
 | 
						|
     $                   QSTORE( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D0, ZERO = 0.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            COLTYP, CURR, I, IDLMDA, INDX, INDXC, INDXP,
 | 
						|
     $                   IQ2, IS, IW, IZ, K, LDQ2, N1, N2, PTR
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DLAED8, DLAED9, DLAEDA, DLAMRG, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( ICOMPQ.LT.0 .OR. ICOMPQ.GT.1 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ICOMPQ.EQ.1 .AND. QSIZ.LT.N ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( MIN( 1, N ).GT.CUTPNT .OR. N.LT.CUTPNT ) THEN
 | 
						|
         INFO = -12
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DLAED7', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     The following values are for bookkeeping purposes only.  They are
 | 
						|
*     integer pointers which indicate the portion of the workspace
 | 
						|
*     used by a particular array in DLAED8 and DLAED9.
 | 
						|
*
 | 
						|
      IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
         LDQ2 = QSIZ
 | 
						|
      ELSE
 | 
						|
         LDQ2 = N
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IZ = 1
 | 
						|
      IDLMDA = IZ + N
 | 
						|
      IW = IDLMDA + N
 | 
						|
      IQ2 = IW + N
 | 
						|
      IS = IQ2 + N*LDQ2
 | 
						|
*
 | 
						|
      INDX = 1
 | 
						|
      INDXC = INDX + N
 | 
						|
      COLTYP = INDXC + N
 | 
						|
      INDXP = COLTYP + N
 | 
						|
*
 | 
						|
*     Form the z-vector which consists of the last row of Q_1 and the
 | 
						|
*     first row of Q_2.
 | 
						|
*
 | 
						|
      PTR = 1 + 2**TLVLS
 | 
						|
      DO 10 I = 1, CURLVL - 1
 | 
						|
         PTR = PTR + 2**( TLVLS-I )
 | 
						|
   10 CONTINUE
 | 
						|
      CURR = PTR + CURPBM
 | 
						|
      CALL DLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
 | 
						|
     $             GIVCOL, GIVNUM, QSTORE, QPTR, WORK( IZ ),
 | 
						|
     $             WORK( IZ+N ), INFO )
 | 
						|
*
 | 
						|
*     When solving the final problem, we no longer need the stored data,
 | 
						|
*     so we will overwrite the data from this level onto the previously
 | 
						|
*     used storage space.
 | 
						|
*
 | 
						|
      IF( CURLVL.EQ.TLVLS ) THEN
 | 
						|
         QPTR( CURR ) = 1
 | 
						|
         PRMPTR( CURR ) = 1
 | 
						|
         GIVPTR( CURR ) = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Sort and Deflate eigenvalues.
 | 
						|
*
 | 
						|
      CALL DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, CUTPNT,
 | 
						|
     $             WORK( IZ ), WORK( IDLMDA ), WORK( IQ2 ), LDQ2,
 | 
						|
     $             WORK( IW ), PERM( PRMPTR( CURR ) ), GIVPTR( CURR+1 ),
 | 
						|
     $             GIVCOL( 1, GIVPTR( CURR ) ),
 | 
						|
     $             GIVNUM( 1, GIVPTR( CURR ) ), IWORK( INDXP ),
 | 
						|
     $             IWORK( INDX ), INFO )
 | 
						|
      PRMPTR( CURR+1 ) = PRMPTR( CURR ) + N
 | 
						|
      GIVPTR( CURR+1 ) = GIVPTR( CURR+1 ) + GIVPTR( CURR )
 | 
						|
*
 | 
						|
*     Solve Secular Equation.
 | 
						|
*
 | 
						|
      IF( K.NE.0 ) THEN
 | 
						|
         CALL DLAED9( K, 1, K, N, D, WORK( IS ), K, RHO, WORK( IDLMDA ),
 | 
						|
     $                WORK( IW ), QSTORE( QPTR( CURR ) ), K, INFO )
 | 
						|
         IF( INFO.NE.0 )
 | 
						|
     $      GO TO 30
 | 
						|
         IF( ICOMPQ.EQ.1 ) THEN
 | 
						|
            CALL DGEMM( 'N', 'N', QSIZ, K, K, ONE, WORK( IQ2 ), LDQ2,
 | 
						|
     $                  QSTORE( QPTR( CURR ) ), K, ZERO, Q, LDQ )
 | 
						|
         END IF
 | 
						|
         QPTR( CURR+1 ) = QPTR( CURR ) + K**2
 | 
						|
*
 | 
						|
*     Prepare the INDXQ sorting permutation.
 | 
						|
*
 | 
						|
         N1 = K
 | 
						|
         N2 = N - K
 | 
						|
         CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )
 | 
						|
      ELSE
 | 
						|
         QPTR( CURR+1 ) = QPTR( CURR )
 | 
						|
         DO 20 I = 1, N
 | 
						|
            INDXQ( I ) = I
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLAED7
 | 
						|
*
 | 
						|
      END
 |