339 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			339 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORGBR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORGBR + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgbr.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgbr.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgbr.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          VECT
 | |
| *       INTEGER            INFO, K, LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SORGBR generates one of the real orthogonal matrices Q or P**T
 | |
| *> determined by SGEBRD when reducing a real matrix A to bidiagonal
 | |
| *> form: A = Q * B * P**T.  Q and P**T are defined as products of
 | |
| *> elementary reflectors H(i) or G(i) respectively.
 | |
| *>
 | |
| *> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
 | |
| *> is of order M:
 | |
| *> if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n
 | |
| *> columns of Q, where m >= n >= k;
 | |
| *> if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an
 | |
| *> M-by-M matrix.
 | |
| *>
 | |
| *> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
 | |
| *> is of order N:
 | |
| *> if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m
 | |
| *> rows of P**T, where n >= m >= k;
 | |
| *> if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as
 | |
| *> an N-by-N matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] VECT
 | |
| *> \verbatim
 | |
| *>          VECT is CHARACTER*1
 | |
| *>          Specifies whether the matrix Q or the matrix P**T is
 | |
| *>          required, as defined in the transformation applied by SGEBRD:
 | |
| *>          = 'Q':  generate Q;
 | |
| *>          = 'P':  generate P**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix Q or P**T to be returned.
 | |
| *>          M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix Q or P**T to be returned.
 | |
| *>          N >= 0.
 | |
| *>          If VECT = 'Q', M >= N >= min(M,K);
 | |
| *>          if VECT = 'P', N >= M >= min(N,K).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          If VECT = 'Q', the number of columns in the original M-by-K
 | |
| *>          matrix reduced by SGEBRD.
 | |
| *>          If VECT = 'P', the number of rows in the original K-by-N
 | |
| *>          matrix reduced by SGEBRD.
 | |
| *>          K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the vectors which define the elementary reflectors,
 | |
| *>          as returned by SGEBRD.
 | |
| *>          On exit, the M-by-N matrix Q or P**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension
 | |
| *>                                (min(M,K)) if VECT = 'Q'
 | |
| *>                                (min(N,K)) if VECT = 'P'
 | |
| *>          TAU(i) must contain the scalar factor of the elementary
 | |
| *>          reflector H(i) or G(i), which determines Q or P**T, as
 | |
| *>          returned by SGEBRD in its array argument TAUQ or TAUP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
 | |
| *>          For optimum performance LWORK >= min(M,N)*NB, where NB
 | |
| *>          is the optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date April 2012
 | |
| *
 | |
| *> \ingroup realGBcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     April 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          VECT
 | |
|       INTEGER            INFO, K, LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, WANTQ
 | |
|       INTEGER            I, IINFO, J, LWKOPT, MN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV, LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SORGLQ, SORGQR, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       WANTQ = LSAME( VECT, 'Q' )
 | |
|       MN = MIN( M, N )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
 | |
|      $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
 | |
|      $         MIN( N, K ) ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( K.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          WORK( 1 ) = 1
 | |
|          IF( WANTQ ) THEN
 | |
|             IF( M.GE.K ) THEN
 | |
|                CALL SORGQR( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
 | |
|             ELSE
 | |
|                IF( M.GT.1 ) THEN
 | |
|                   CALL SORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
 | |
|      $                         -1, IINFO )
 | |
|                END IF
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( K.LT.N ) THEN
 | |
|                CALL SORGLQ( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
 | |
|             ELSE
 | |
|                IF( N.GT.1 ) THEN
 | |
|                   CALL SORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
 | |
|      $                         -1, IINFO )
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|          LWKOPT = WORK( 1 )
 | |
|          LWKOPT = MAX (LWKOPT, MN)
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SORGBR', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          WORK( 1 ) = LWKOPT
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|          WORK( 1 ) = 1
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTQ ) THEN
 | |
| *
 | |
| *        Form Q, determined by a call to SGEBRD to reduce an m-by-k
 | |
| *        matrix
 | |
| *
 | |
|          IF( M.GE.K ) THEN
 | |
| *
 | |
| *           If m >= k, assume m >= n >= k
 | |
| *
 | |
|             CALL SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           If m < k, assume m = n
 | |
| *
 | |
| *           Shift the vectors which define the elementary reflectors one
 | |
| *           column to the right, and set the first row and column of Q
 | |
| *           to those of the unit matrix
 | |
| *
 | |
|             DO 20 J = M, 2, -1
 | |
|                A( 1, J ) = ZERO
 | |
|                DO 10 I = J + 1, M
 | |
|                   A( I, J ) = A( I, J-1 )
 | |
|    10          CONTINUE
 | |
|    20       CONTINUE
 | |
|             A( 1, 1 ) = ONE
 | |
|             DO 30 I = 2, M
 | |
|                A( I, 1 ) = ZERO
 | |
|    30       CONTINUE
 | |
|             IF( M.GT.1 ) THEN
 | |
| *
 | |
| *              Form Q(2:m,2:m)
 | |
| *
 | |
|                CALL SORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
 | |
|      $                      LWORK, IINFO )
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form P**T, determined by a call to SGEBRD to reduce a k-by-n
 | |
| *        matrix
 | |
| *
 | |
|          IF( K.LT.N ) THEN
 | |
| *
 | |
| *           If k < n, assume k <= m <= n
 | |
| *
 | |
|             CALL SORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           If k >= n, assume m = n
 | |
| *
 | |
| *           Shift the vectors which define the elementary reflectors one
 | |
| *           row downward, and set the first row and column of P**T to
 | |
| *           those of the unit matrix
 | |
| *
 | |
|             A( 1, 1 ) = ONE
 | |
|             DO 40 I = 2, N
 | |
|                A( I, 1 ) = ZERO
 | |
|    40       CONTINUE
 | |
|             DO 60 J = 2, N
 | |
|                DO 50 I = J - 1, 2, -1
 | |
|                   A( I, J ) = A( I-1, J )
 | |
|    50          CONTINUE
 | |
|                A( 1, J ) = ZERO
 | |
|    60       CONTINUE
 | |
|             IF( N.GT.1 ) THEN
 | |
| *
 | |
| *              Form P**T(2:n,2:n)
 | |
| *
 | |
|                CALL SORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
 | |
|      $                      LWORK, IINFO )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORGBR
 | |
| *
 | |
|       END
 |