262 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGETRI
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGETRI + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgetri.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgetri.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgetri.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LWORK, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               A( LDA, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGETRI computes the inverse of a matrix using the LU factorization
 | 
						|
*> computed by SGETRF.
 | 
						|
*>
 | 
						|
*> This method inverts U and then computes inv(A) by solving the system
 | 
						|
*> inv(A)*L = inv(U) for inv(A).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the factors L and U from the factorization
 | 
						|
*>          A = P*L*U as computed by SGETRF.
 | 
						|
*>          On exit, if INFO = 0, the inverse of the original matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices from SGETRF; for 1<=i<=N, row i of the
 | 
						|
*>          matrix was interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= max(1,N).
 | 
						|
*>          For optimal performance LWORK >= N*NB, where NB is
 | 
						|
*>          the optimal blocksize returned by ILAENV.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, U(i,i) is exactly zero; the matrix is
 | 
						|
*>                singular and its inverse could not be computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup realGEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LWORK, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               A( LDA, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
 | 
						|
     $                   NBMIN, NN
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMM, SGEMV, SSWAP, STRSM, STRTRI, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NB = ILAENV( 1, 'SGETRI', ' ', N, -1, -1, -1 )
 | 
						|
      LWKOPT = N*NB
 | 
						|
      WORK( 1 ) = LWKOPT
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGETRI', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Form inv(U).  If INFO > 0 from STRTRI, then U is singular,
 | 
						|
*     and the inverse is not computed.
 | 
						|
*
 | 
						|
      CALL STRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
 | 
						|
      IF( INFO.GT.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      NBMIN = 2
 | 
						|
      LDWORK = N
 | 
						|
      IF( NB.GT.1 .AND. NB.LT.N ) THEN
 | 
						|
         IWS = MAX( LDWORK*NB, 1 )
 | 
						|
         IF( LWORK.LT.IWS ) THEN
 | 
						|
            NB = LWORK / LDWORK
 | 
						|
            NBMIN = MAX( 2, ILAENV( 2, 'SGETRI', ' ', N, -1, -1, -1 ) )
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
         IWS = N
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Solve the equation inv(A)*L = inv(U) for inv(A).
 | 
						|
*
 | 
						|
      IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code.
 | 
						|
*
 | 
						|
         DO 20 J = N, 1, -1
 | 
						|
*
 | 
						|
*           Copy current column of L to WORK and replace with zeros.
 | 
						|
*
 | 
						|
            DO 10 I = J + 1, N
 | 
						|
               WORK( I ) = A( I, J )
 | 
						|
               A( I, J ) = ZERO
 | 
						|
   10       CONTINUE
 | 
						|
*
 | 
						|
*           Compute current column of inv(A).
 | 
						|
*
 | 
						|
            IF( J.LT.N )
 | 
						|
     $         CALL SGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
 | 
						|
     $                     LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
 | 
						|
   20    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use blocked code.
 | 
						|
*
 | 
						|
         NN = ( ( N-1 ) / NB )*NB + 1
 | 
						|
         DO 50 J = NN, 1, -NB
 | 
						|
            JB = MIN( NB, N-J+1 )
 | 
						|
*
 | 
						|
*           Copy current block column of L to WORK and replace with
 | 
						|
*           zeros.
 | 
						|
*
 | 
						|
            DO 40 JJ = J, J + JB - 1
 | 
						|
               DO 30 I = JJ + 1, N
 | 
						|
                  WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
 | 
						|
                  A( I, JJ ) = ZERO
 | 
						|
   30          CONTINUE
 | 
						|
   40       CONTINUE
 | 
						|
*
 | 
						|
*           Compute current block column of inv(A).
 | 
						|
*
 | 
						|
            IF( J+JB.LE.N )
 | 
						|
     $         CALL SGEMM( 'No transpose', 'No transpose', N, JB,
 | 
						|
     $                     N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
 | 
						|
     $                     WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
 | 
						|
            CALL STRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
 | 
						|
     $                  ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
 | 
						|
   50    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Apply column interchanges.
 | 
						|
*
 | 
						|
      DO 60 J = N - 1, 1, -1
 | 
						|
         JP = IPIV( J )
 | 
						|
         IF( JP.NE.J )
 | 
						|
     $      CALL SSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
 | 
						|
   60 CONTINUE
 | 
						|
*
 | 
						|
      WORK( 1 ) = IWS
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGETRI
 | 
						|
*
 | 
						|
      END
 |