682 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			682 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DGEEVX + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeevx.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeevx.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeevx.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
 | 
						|
*                          VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
 | 
						|
*                          RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
 | 
						|
*       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
 | 
						|
*       DOUBLE PRECISION   ABNRM
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
 | 
						|
*      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
*      $                   WI( * ), WORK( * ), WR( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
 | 
						|
*> eigenvalues and, optionally, the left and/or right eigenvectors.
 | 
						|
*>
 | 
						|
*> Optionally also, it computes a balancing transformation to improve
 | 
						|
*> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
 | 
						|
*> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
 | 
						|
*> (RCONDE), and reciprocal condition numbers for the right
 | 
						|
*> eigenvectors (RCONDV).
 | 
						|
*>
 | 
						|
*> The right eigenvector v(j) of A satisfies
 | 
						|
*>                  A * v(j) = lambda(j) * v(j)
 | 
						|
*> where lambda(j) is its eigenvalue.
 | 
						|
*> The left eigenvector u(j) of A satisfies
 | 
						|
*>               u(j)**H * A = lambda(j) * u(j)**H
 | 
						|
*> where u(j)**H denotes the conjugate-transpose of u(j).
 | 
						|
*>
 | 
						|
*> The computed eigenvectors are normalized to have Euclidean norm
 | 
						|
*> equal to 1 and largest component real.
 | 
						|
*>
 | 
						|
*> Balancing a matrix means permuting the rows and columns to make it
 | 
						|
*> more nearly upper triangular, and applying a diagonal similarity
 | 
						|
*> transformation D * A * D**(-1), where D is a diagonal matrix, to
 | 
						|
*> make its rows and columns closer in norm and the condition numbers
 | 
						|
*> of its eigenvalues and eigenvectors smaller.  The computed
 | 
						|
*> reciprocal condition numbers correspond to the balanced matrix.
 | 
						|
*> Permuting rows and columns will not change the condition numbers
 | 
						|
*> (in exact arithmetic) but diagonal scaling will.  For further
 | 
						|
*> explanation of balancing, see section 4.10.2 of the LAPACK
 | 
						|
*> Users' Guide.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] BALANC
 | 
						|
*> \verbatim
 | 
						|
*>          BALANC is CHARACTER*1
 | 
						|
*>          Indicates how the input matrix should be diagonally scaled
 | 
						|
*>          and/or permuted to improve the conditioning of its
 | 
						|
*>          eigenvalues.
 | 
						|
*>          = 'N': Do not diagonally scale or permute;
 | 
						|
*>          = 'P': Perform permutations to make the matrix more nearly
 | 
						|
*>                 upper triangular. Do not diagonally scale;
 | 
						|
*>          = 'S': Diagonally scale the matrix, i.e. replace A by
 | 
						|
*>                 D*A*D**(-1), where D is a diagonal matrix chosen
 | 
						|
*>                 to make the rows and columns of A more equal in
 | 
						|
*>                 norm. Do not permute;
 | 
						|
*>          = 'B': Both diagonally scale and permute A.
 | 
						|
*>
 | 
						|
*>          Computed reciprocal condition numbers will be for the matrix
 | 
						|
*>          after balancing and/or permuting. Permuting does not change
 | 
						|
*>          condition numbers (in exact arithmetic), but balancing does.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBVL
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVL is CHARACTER*1
 | 
						|
*>          = 'N': left eigenvectors of A are not computed;
 | 
						|
*>          = 'V': left eigenvectors of A are computed.
 | 
						|
*>          If SENSE = 'E' or 'B', JOBVL must = 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] JOBVR
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVR is CHARACTER*1
 | 
						|
*>          = 'N': right eigenvectors of A are not computed;
 | 
						|
*>          = 'V': right eigenvectors of A are computed.
 | 
						|
*>          If SENSE = 'E' or 'B', JOBVR must = 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SENSE
 | 
						|
*> \verbatim
 | 
						|
*>          SENSE is CHARACTER*1
 | 
						|
*>          Determines which reciprocal condition numbers are computed.
 | 
						|
*>          = 'N': None are computed;
 | 
						|
*>          = 'E': Computed for eigenvalues only;
 | 
						|
*>          = 'V': Computed for right eigenvectors only;
 | 
						|
*>          = 'B': Computed for eigenvalues and right eigenvectors.
 | 
						|
*>
 | 
						|
*>          If SENSE = 'E' or 'B', both left and right eigenvectors
 | 
						|
*>          must also be computed (JOBVL = 'V' and JOBVR = 'V').
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>          On entry, the N-by-N matrix A.
 | 
						|
*>          On exit, A has been overwritten.  If JOBVL = 'V' or
 | 
						|
*>          JOBVR = 'V', A contains the real Schur form of the balanced
 | 
						|
*>          version of the input matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WR
 | 
						|
*> \verbatim
 | 
						|
*>          WR is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WI
 | 
						|
*> \verbatim
 | 
						|
*>          WI is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          WR and WI contain the real and imaginary parts,
 | 
						|
*>          respectively, of the computed eigenvalues.  Complex
 | 
						|
*>          conjugate pairs of eigenvalues will appear consecutively
 | 
						|
*>          with the eigenvalue having the positive imaginary part
 | 
						|
*>          first.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
 | 
						|
*>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
 | 
						|
*>          after another in the columns of VL, in the same order
 | 
						|
*>          as their eigenvalues.
 | 
						|
*>          If JOBVL = 'N', VL is not referenced.
 | 
						|
*>          If the j-th eigenvalue is real, then u(j) = VL(:,j),
 | 
						|
*>          the j-th column of VL.
 | 
						|
*>          If the j-th and (j+1)-st eigenvalues form a complex
 | 
						|
*>          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
 | 
						|
*>          u(j+1) = VL(:,j) - i*VL(:,j+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          The leading dimension of the array VL.  LDVL >= 1; if
 | 
						|
*>          JOBVL = 'V', LDVL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
 | 
						|
*>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
 | 
						|
*>          after another in the columns of VR, in the same order
 | 
						|
*>          as their eigenvalues.
 | 
						|
*>          If JOBVR = 'N', VR is not referenced.
 | 
						|
*>          If the j-th eigenvalue is real, then v(j) = VR(:,j),
 | 
						|
*>          the j-th column of VR.
 | 
						|
*>          If the j-th and (j+1)-st eigenvalues form a complex
 | 
						|
*>          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
 | 
						|
*>          v(j+1) = VR(:,j) - i*VR(:,j+1).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          The leading dimension of the array VR.  LDVR >= 1, and if
 | 
						|
*>          JOBVR = 'V', LDVR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ILO
 | 
						|
*> \verbatim
 | 
						|
*>          ILO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IHI
 | 
						|
*> \verbatim
 | 
						|
*>          IHI is INTEGER
 | 
						|
*>          ILO and IHI are integer values determined when A was
 | 
						|
*>          balanced.  The balanced A(i,j) = 0 if I > J and
 | 
						|
*>          J = 1,...,ILO-1 or I = IHI+1,...,N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SCALE
 | 
						|
*> \verbatim
 | 
						|
*>          SCALE is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          Details of the permutations and scaling factors applied
 | 
						|
*>          when balancing A.  If P(j) is the index of the row and column
 | 
						|
*>          interchanged with row and column j, and D(j) is the scaling
 | 
						|
*>          factor applied to row and column j, then
 | 
						|
*>          SCALE(J) = P(J),    for J = 1,...,ILO-1
 | 
						|
*>                   = D(J),    for J = ILO,...,IHI
 | 
						|
*>                   = P(J)     for J = IHI+1,...,N.
 | 
						|
*>          The order in which the interchanges are made is N to IHI+1,
 | 
						|
*>          then 1 to ILO-1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ABNRM
 | 
						|
*> \verbatim
 | 
						|
*>          ABNRM is DOUBLE PRECISION
 | 
						|
*>          The one-norm of the balanced matrix (the maximum
 | 
						|
*>          of the sum of absolute values of elements of any column).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCONDE
 | 
						|
*> \verbatim
 | 
						|
*>          RCONDE is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          RCONDE(j) is the reciprocal condition number of the j-th
 | 
						|
*>          eigenvalue.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCONDV
 | 
						|
*> \verbatim
 | 
						|
*>          RCONDV is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          RCONDV(j) is the reciprocal condition number of the j-th
 | 
						|
*>          right eigenvector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.   If SENSE = 'N' or 'E',
 | 
						|
*>          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
 | 
						|
*>          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
 | 
						|
*>          For good performance, LWORK must generally be larger.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (2*N-2)
 | 
						|
*>          If SENSE = 'N' or 'E', not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = i, the QR algorithm failed to compute all the
 | 
						|
*>                eigenvalues, and no eigenvectors or condition numbers
 | 
						|
*>                have been computed; elements 1:ILO-1 and i+1:N of WR
 | 
						|
*>                and WI contain eigenvalues which have converged.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup doubleGEeigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
 | 
						|
     $                   VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
 | 
						|
     $                   RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          BALANC, JOBVL, JOBVR, SENSE
 | 
						|
      INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
 | 
						|
      DOUBLE PRECISION   ABNRM
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
 | 
						|
     $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
     $                   WI( * ), WORK( * ), WR( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
 | 
						|
     $                   WNTSNN, WNTSNV
 | 
						|
      CHARACTER          JOB, SIDE
 | 
						|
      INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
 | 
						|
     $                   MINWRK, NOUT
 | 
						|
      DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
 | 
						|
     $                   SN
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      LOGICAL            SELECT( 1 )
 | 
						|
      DOUBLE PRECISION   DUM( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
 | 
						|
     $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
 | 
						|
     $                   DTRSNA, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IDAMAX, ILAENV
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
 | 
						|
      EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
 | 
						|
     $                   DNRM2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      WANTVL = LSAME( JOBVL, 'V' )
 | 
						|
      WANTVR = LSAME( JOBVR, 'V' )
 | 
						|
      WNTSNN = LSAME( SENSE, 'N' )
 | 
						|
      WNTSNE = LSAME( SENSE, 'E' )
 | 
						|
      WNTSNV = LSAME( SENSE, 'V' )
 | 
						|
      WNTSNB = LSAME( SENSE, 'B' )
 | 
						|
      IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
 | 
						|
     $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
 | 
						|
     $     THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
 | 
						|
     $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
 | 
						|
     $         WANTVR ) ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
 | 
						|
         INFO = -13
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*      (Note: Comments in the code beginning "Workspace:" describe the
 | 
						|
*       minimal amount of workspace needed at that point in the code,
 | 
						|
*       as well as the preferred amount for good performance.
 | 
						|
*       NB refers to the optimal block size for the immediately
 | 
						|
*       following subroutine, as returned by ILAENV.
 | 
						|
*       HSWORK refers to the workspace preferred by DHSEQR, as
 | 
						|
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
 | 
						|
*       the worst case.)
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( N.EQ.0 ) THEN
 | 
						|
            MINWRK = 1
 | 
						|
            MAXWRK = 1
 | 
						|
         ELSE
 | 
						|
            MAXWRK = N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
 | 
						|
*
 | 
						|
            IF( WANTVL ) THEN
 | 
						|
               CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
 | 
						|
     $                WORK, -1, INFO )
 | 
						|
            ELSE IF( WANTVR ) THEN
 | 
						|
               CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
 | 
						|
     $                WORK, -1, INFO )
 | 
						|
            ELSE
 | 
						|
               IF( WNTSNN ) THEN
 | 
						|
                  CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR,
 | 
						|
     $                LDVR, WORK, -1, INFO )
 | 
						|
               ELSE
 | 
						|
                  CALL DHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR,
 | 
						|
     $                LDVR, WORK, -1, INFO )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            HSWORK = WORK( 1 )
 | 
						|
*
 | 
						|
            IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
 | 
						|
               MINWRK = 2*N
 | 
						|
               IF( .NOT.WNTSNN )
 | 
						|
     $            MINWRK = MAX( MINWRK, N*N+6*N )
 | 
						|
               MAXWRK = MAX( MAXWRK, HSWORK )
 | 
						|
               IF( .NOT.WNTSNN )
 | 
						|
     $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
 | 
						|
            ELSE
 | 
						|
               MINWRK = 3*N
 | 
						|
               IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
 | 
						|
     $            MINWRK = MAX( MINWRK, N*N + 6*N )
 | 
						|
               MAXWRK = MAX( MAXWRK, HSWORK )
 | 
						|
               MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'DORGHR',
 | 
						|
     $                       ' ', N, 1, N, -1 ) )
 | 
						|
               IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
 | 
						|
     $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
 | 
						|
               MAXWRK = MAX( MAXWRK, 3*N )
 | 
						|
            END IF
 | 
						|
            MAXWRK = MAX( MAXWRK, MINWRK )
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = MAXWRK
 | 
						|
*
 | 
						|
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -21
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DGEEVX', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'P' )
 | 
						|
      SMLNUM = DLAMCH( 'S' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL DLABAD( SMLNUM, BIGNUM )
 | 
						|
      SMLNUM = SQRT( SMLNUM ) / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
*     Scale A if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ICOND = 0
 | 
						|
      ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
 | 
						|
      SCALEA = .FALSE.
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
         SCALEA = .TRUE.
 | 
						|
         CSCALE = SMLNUM
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
         SCALEA = .TRUE.
 | 
						|
         CSCALE = BIGNUM
 | 
						|
      END IF
 | 
						|
      IF( SCALEA )
 | 
						|
     $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
 | 
						|
*
 | 
						|
*     Balance the matrix and compute ABNRM
 | 
						|
*
 | 
						|
      CALL DGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
 | 
						|
      ABNRM = DLANGE( '1', N, N, A, LDA, DUM )
 | 
						|
      IF( SCALEA ) THEN
 | 
						|
         DUM( 1 ) = ABNRM
 | 
						|
         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
 | 
						|
         ABNRM = DUM( 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Reduce to upper Hessenberg form
 | 
						|
*     (Workspace: need 2*N, prefer N+N*NB)
 | 
						|
*
 | 
						|
      ITAU = 1
 | 
						|
      IWRK = ITAU + N
 | 
						|
      CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
 | 
						|
     $             LWORK-IWRK+1, IERR )
 | 
						|
*
 | 
						|
      IF( WANTVL ) THEN
 | 
						|
*
 | 
						|
*        Want left eigenvectors
 | 
						|
*        Copy Householder vectors to VL
 | 
						|
*
 | 
						|
         SIDE = 'L'
 | 
						|
         CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
 | 
						|
*
 | 
						|
*        Generate orthogonal matrix in VL
 | 
						|
*        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
 | 
						|
*
 | 
						|
         CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
 | 
						|
     $                LWORK-IWRK+1, IERR )
 | 
						|
*
 | 
						|
*        Perform QR iteration, accumulating Schur vectors in VL
 | 
						|
*        (Workspace: need 1, prefer HSWORK (see comments) )
 | 
						|
*
 | 
						|
         IWRK = ITAU
 | 
						|
         CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
 | 
						|
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | 
						|
*
 | 
						|
         IF( WANTVR ) THEN
 | 
						|
*
 | 
						|
*           Want left and right eigenvectors
 | 
						|
*           Copy Schur vectors to VR
 | 
						|
*
 | 
						|
            SIDE = 'B'
 | 
						|
            CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE IF( WANTVR ) THEN
 | 
						|
*
 | 
						|
*        Want right eigenvectors
 | 
						|
*        Copy Householder vectors to VR
 | 
						|
*
 | 
						|
         SIDE = 'R'
 | 
						|
         CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
 | 
						|
*
 | 
						|
*        Generate orthogonal matrix in VR
 | 
						|
*        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
 | 
						|
*
 | 
						|
         CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
 | 
						|
     $                LWORK-IWRK+1, IERR )
 | 
						|
*
 | 
						|
*        Perform QR iteration, accumulating Schur vectors in VR
 | 
						|
*        (Workspace: need 1, prefer HSWORK (see comments) )
 | 
						|
*
 | 
						|
         IWRK = ITAU
 | 
						|
         CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
 | 
						|
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute eigenvalues only
 | 
						|
*        If condition numbers desired, compute Schur form
 | 
						|
*
 | 
						|
         IF( WNTSNN ) THEN
 | 
						|
            JOB = 'E'
 | 
						|
         ELSE
 | 
						|
            JOB = 'S'
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        (Workspace: need 1, prefer HSWORK (see comments) )
 | 
						|
*
 | 
						|
         IWRK = ITAU
 | 
						|
         CALL DHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
 | 
						|
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If INFO > 0 from DHSEQR, then quit
 | 
						|
*
 | 
						|
      IF( INFO.GT.0 )
 | 
						|
     $   GO TO 50
 | 
						|
*
 | 
						|
      IF( WANTVL .OR. WANTVR ) THEN
 | 
						|
*
 | 
						|
*        Compute left and/or right eigenvectors
 | 
						|
*        (Workspace: need 3*N)
 | 
						|
*
 | 
						|
         CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
 | 
						|
     $                N, NOUT, WORK( IWRK ), IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute condition numbers if desired
 | 
						|
*     (Workspace: need N*N+6*N unless SENSE = 'E')
 | 
						|
*
 | 
						|
      IF( .NOT.WNTSNN ) THEN
 | 
						|
         CALL DTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
 | 
						|
     $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
 | 
						|
     $                ICOND )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTVL ) THEN
 | 
						|
*
 | 
						|
*        Undo balancing of left eigenvectors
 | 
						|
*
 | 
						|
         CALL DGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
 | 
						|
     $                IERR )
 | 
						|
*
 | 
						|
*        Normalize left eigenvectors and make largest component real
 | 
						|
*
 | 
						|
         DO 20 I = 1, N
 | 
						|
            IF( WI( I ).EQ.ZERO ) THEN
 | 
						|
               SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
 | 
						|
               CALL DSCAL( N, SCL, VL( 1, I ), 1 )
 | 
						|
            ELSE IF( WI( I ).GT.ZERO ) THEN
 | 
						|
               SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
 | 
						|
     $               DNRM2( N, VL( 1, I+1 ), 1 ) )
 | 
						|
               CALL DSCAL( N, SCL, VL( 1, I ), 1 )
 | 
						|
               CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
 | 
						|
               DO 10 K = 1, N
 | 
						|
                  WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
 | 
						|
   10          CONTINUE
 | 
						|
               K = IDAMAX( N, WORK, 1 )
 | 
						|
               CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
 | 
						|
               CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
 | 
						|
               VL( K, I+1 ) = ZERO
 | 
						|
            END IF
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTVR ) THEN
 | 
						|
*
 | 
						|
*        Undo balancing of right eigenvectors
 | 
						|
*
 | 
						|
         CALL DGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
 | 
						|
     $                IERR )
 | 
						|
*
 | 
						|
*        Normalize right eigenvectors and make largest component real
 | 
						|
*
 | 
						|
         DO 40 I = 1, N
 | 
						|
            IF( WI( I ).EQ.ZERO ) THEN
 | 
						|
               SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
 | 
						|
               CALL DSCAL( N, SCL, VR( 1, I ), 1 )
 | 
						|
            ELSE IF( WI( I ).GT.ZERO ) THEN
 | 
						|
               SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
 | 
						|
     $               DNRM2( N, VR( 1, I+1 ), 1 ) )
 | 
						|
               CALL DSCAL( N, SCL, VR( 1, I ), 1 )
 | 
						|
               CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
 | 
						|
               DO 30 K = 1, N
 | 
						|
                  WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
 | 
						|
   30          CONTINUE
 | 
						|
               K = IDAMAX( N, WORK, 1 )
 | 
						|
               CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
 | 
						|
               CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
 | 
						|
               VR( K, I+1 ) = ZERO
 | 
						|
            END IF
 | 
						|
   40    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Undo scaling if necessary
 | 
						|
*
 | 
						|
   50 CONTINUE
 | 
						|
      IF( SCALEA ) THEN
 | 
						|
         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
 | 
						|
     $                MAX( N-INFO, 1 ), IERR )
 | 
						|
         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
 | 
						|
     $                MAX( N-INFO, 1 ), IERR )
 | 
						|
         IF( INFO.EQ.0 ) THEN
 | 
						|
            IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
 | 
						|
     $         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
 | 
						|
     $                      IERR )
 | 
						|
         ELSE
 | 
						|
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
 | 
						|
     $                   IERR )
 | 
						|
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
 | 
						|
     $                   IERR )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = MAXWRK
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGEEVX
 | 
						|
*
 | 
						|
      END
 |