OpenBLAS/lapack-netlib/SRC/clartg.f90

234 lines
5.5 KiB
Fortran

!> \brief \b CLARTG generates a plane rotation with real cosine and complex sine.
!
! =========== DOCUMENTATION ===========
!
! Online html documentation available at
! http://www.netlib.org/lapack/explore-html/
!
! Definition:
! ===========
!
! SUBROUTINE CLARTG( F, G, C, S, R )
!
! .. Scalar Arguments ..
! REAL(wp) C
! COMPLEX(wp) F, G, R, S
! ..
!
!> \par Purpose:
! =============
!>
!> \verbatim
!>
!> CLARTG generates a plane rotation so that
!>
!> [ C S ] . [ F ] = [ R ]
!> [ -conjg(S) C ] [ G ] [ 0 ]
!>
!> where C is real and C**2 + |S|**2 = 1.
!>
!> The mathematical formulas used for C and S are
!>
!> sgn(x) = { x / |x|, x != 0
!> { 1, x = 0
!>
!> R = sgn(F) * sqrt(|F|**2 + |G|**2)
!>
!> C = |F| / sqrt(|F|**2 + |G|**2)
!>
!> S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
!>
!> When F and G are real, the formulas simplify to C = F/R and
!> S = G/R, and the returned values of C, S, and R should be
!> identical to those returned by CLARTG.
!>
!> The algorithm used to compute these quantities incorporates scaling
!> to avoid overflow or underflow in computing the square root of the
!> sum of squares.
!>
!> This is a faster version of the BLAS1 routine CROTG, except for
!> the following differences:
!> F and G are unchanged on return.
!> If G=0, then C=1 and S=0.
!> If F=0, then C=0 and S is chosen so that R is real.
!>
!> Below, wp=>sp stands for single precision from LA_CONSTANTS module.
!> \endverbatim
!
! Arguments:
! ==========
!
!> \param[in] F
!> \verbatim
!> F is COMPLEX(wp)
!> The first component of vector to be rotated.
!> \endverbatim
!>
!> \param[in] G
!> \verbatim
!> G is COMPLEX(wp)
!> The second component of vector to be rotated.
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!> C is REAL(wp)
!> The cosine of the rotation.
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!> S is COMPLEX(wp)
!> The sine of the rotation.
!> \endverbatim
!>
!> \param[out] R
!> \verbatim
!> R is COMPLEX(wp)
!> The nonzero component of the rotated vector.
!> \endverbatim
!
! Authors:
! ========
!
!> \author Edward Anderson, Lockheed Martin
!
!> \date August 2016
!
!> \ingroup OTHERauxiliary
!
!> \par Contributors:
! ==================
!>
!> Weslley Pereira, University of Colorado Denver, USA
!
!> \par Further Details:
! =====================
!>
!> \verbatim
!>
!> Anderson E. (2017)
!> Algorithm 978: Safe Scaling in the Level 1 BLAS
!> ACM Trans Math Softw 44:1--28
!> https://doi.org/10.1145/3061665
!>
!> \endverbatim
!
subroutine CLARTG( f, g, c, s, r )
use LA_CONSTANTS, &
only: wp=>sp, zero=>szero, one=>sone, two=>stwo, czero, &
rtmin=>srtmin, rtmax=>srtmax, safmin=>ssafmin, safmax=>ssafmax
!
! -- LAPACK auxiliary routine --
! -- LAPACK is a software package provided by Univ. of Tennessee, --
! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
! February 2021
!
! .. Scalar Arguments ..
real(wp) c
complex(wp) f, g, r, s
! ..
! .. Local Scalars ..
real(wp) :: d, f1, f2, g1, g2, h2, p, u, uu, v, vv, w
complex(wp) :: fs, gs, t
! ..
! .. Intrinsic Functions ..
intrinsic :: abs, aimag, conjg, max, min, real, sqrt
! ..
! .. Statement Functions ..
real(wp) :: ABSSQ
! ..
! .. Statement Function definitions ..
ABSSQ( t ) = real( t )**2 + aimag( t )**2
! ..
! .. Executable Statements ..
!
if( g == czero ) then
c = one
s = czero
r = f
else if( f == czero ) then
c = zero
g1 = max( abs(real(g)), abs(aimag(g)) )
if( g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
g2 = ABSSQ( g )
d = sqrt( g2 )
s = conjg( g ) / d
r = d
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, g1 ) )
uu = one / u
gs = g*uu
g2 = ABSSQ( gs )
d = sqrt( g2 )
s = conjg( gs ) / d
r = d*u
end if
else
f1 = max( abs(real(f)), abs(aimag(f)) )
g1 = max( abs(real(g)), abs(aimag(g)) )
if( f1 > rtmin .and. f1 < rtmax .and. &
g1 > rtmin .and. g1 < rtmax ) then
!
! Use unscaled algorithm
!
f2 = ABSSQ( f )
g2 = ABSSQ( g )
h2 = f2 + g2
if( f2 > rtmin .and. h2 < rtmax ) then
d = sqrt( f2*h2 )
else
d = sqrt( f2 )*sqrt( h2 )
end if
p = 1 / d
c = f2*p
s = conjg( g )*( f*p )
r = f*( h2*p )
else
!
! Use scaled algorithm
!
u = min( safmax, max( safmin, f1, g1 ) )
uu = one / u
gs = g*uu
g2 = ABSSQ( gs )
if( f1*uu < rtmin ) then
!
! f is not well-scaled when scaled by g1.
! Use a different scaling for f.
!
v = min( safmax, max( safmin, f1 ) )
vv = one / v
w = v * uu
fs = f*vv
f2 = ABSSQ( fs )
h2 = f2*w**2 + g2
else
!
! Otherwise use the same scaling for f and g.
!
w = one
fs = f*uu
f2 = ABSSQ( fs )
h2 = f2 + g2
end if
if( f2 > rtmin .and. h2 < rtmax ) then
d = sqrt( f2*h2 )
else
d = sqrt( f2 )*sqrt( h2 )
end if
p = 1 / d
c = ( f2*p )*w
s = conjg( gs )*( fs*p )
r = ( fs*( h2*p ) )*u
end if
end if
return
end subroutine