352 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			352 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SGGLSE solves overdetermined or underdetermined systems for OTHER matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGGLSE + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgglse.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgglse.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgglse.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
 | 
						|
*                          INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), B( LDB, * ), C( * ), D( * ),
 | 
						|
*      $                   WORK( * ), X( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGGLSE solves the linear equality-constrained least squares (LSE)
 | 
						|
*> problem:
 | 
						|
*>
 | 
						|
*>         minimize || c - A*x ||_2   subject to   B*x = d
 | 
						|
*>
 | 
						|
*> where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
 | 
						|
*> M-vector, and d is a given P-vector. It is assumed that
 | 
						|
*> P <= N <= M+P, and
 | 
						|
*>
 | 
						|
*>          rank(B) = P and  rank( (A) ) = N.
 | 
						|
*>                               ( (B) )
 | 
						|
*>
 | 
						|
*> These conditions ensure that the LSE problem has a unique solution,
 | 
						|
*> which is obtained using a generalized RQ factorization of the
 | 
						|
*> matrices (B, A) given by
 | 
						|
*>
 | 
						|
*>    B = (0 R)*Q,   A = Z*T*Q.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrices A and B. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] P
 | 
						|
*> \verbatim
 | 
						|
*>          P is INTEGER
 | 
						|
*>          The number of rows of the matrix B. 0 <= P <= N <= M+P.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, the elements on and above the diagonal of the array
 | 
						|
*>          contain the min(M,N)-by-N upper trapezoidal matrix T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,N)
 | 
						|
*>          On entry, the P-by-N matrix B.
 | 
						|
*>          On exit, the upper triangle of the subarray B(1:P,N-P+1:N)
 | 
						|
*>          contains the P-by-P upper triangular matrix R.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,P).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL array, dimension (M)
 | 
						|
*>          On entry, C contains the right hand side vector for the
 | 
						|
*>          least squares part of the LSE problem.
 | 
						|
*>          On exit, the residual sum of squares for the solution
 | 
						|
*>          is given by the sum of squares of elements N-P+1 to M of
 | 
						|
*>          vector C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (P)
 | 
						|
*>          On entry, D contains the right hand side vector for the
 | 
						|
*>          constrained equation.
 | 
						|
*>          On exit, D is destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension (N)
 | 
						|
*>          On exit, X is the solution of the LSE problem.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK. LWORK >= max(1,M+N+P).
 | 
						|
*>          For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
 | 
						|
*>          where NB is an upper bound for the optimal blocksizes for
 | 
						|
*>          SGEQRF, SGERQF, SORMQR and SORMRQ.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          = 1:  the upper triangular factor R associated with B in the
 | 
						|
*>                generalized RQ factorization of the pair (B, A) is
 | 
						|
*>                singular, so that rank(B) < P; the least squares
 | 
						|
*>                solution could not be computed.
 | 
						|
*>          = 2:  the (N-P) by (N-P) part of the upper trapezoidal factor
 | 
						|
*>                T associated with A in the generalized RQ factorization
 | 
						|
*>                of the pair (B, A) is singular, so that
 | 
						|
*>                rank( (A) ) < N; the least squares solution could not
 | 
						|
*>                    ( (B) )
 | 
						|
*>                be computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERsolve
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), B( LDB, * ), C( * ), D( * ),
 | 
						|
     $                   WORK( * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LQUERY
 | 
						|
      INTEGER            LOPT, LWKMIN, LWKOPT, MN, NB, NB1, NB2, NB3,
 | 
						|
     $                   NB4, NR
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SAXPY, SCOPY, SGEMV, SGGRQF, SORMQR, SORMRQ,
 | 
						|
     $                   STRMV, STRTRS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           ILAENV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          INT, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      MN = MIN( M, N )
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Calculate workspace
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0) THEN
 | 
						|
         IF( N.EQ.0 ) THEN
 | 
						|
            LWKMIN = 1
 | 
						|
            LWKOPT = 1
 | 
						|
         ELSE
 | 
						|
            NB1 = ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 )
 | 
						|
            NB2 = ILAENV( 1, 'SGERQF', ' ', M, N, -1, -1 )
 | 
						|
            NB3 = ILAENV( 1, 'SORMQR', ' ', M, N, P, -1 )
 | 
						|
            NB4 = ILAENV( 1, 'SORMRQ', ' ', M, N, P, -1 )
 | 
						|
            NB = MAX( NB1, NB2, NB3, NB4 )
 | 
						|
            LWKMIN = M + N + P
 | 
						|
            LWKOPT = P + MN + MAX( M, N )*NB
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = LWKOPT
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -12
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGGLSE', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Compute the GRQ factorization of matrices B and A:
 | 
						|
*
 | 
						|
*            B*Q**T = (  0  T12 ) P   Z**T*A*Q**T = ( R11 R12 ) N-P
 | 
						|
*                        N-P  P                     (  0  R22 ) M+P-N
 | 
						|
*                                                      N-P  P
 | 
						|
*
 | 
						|
*     where T12 and R11 are upper triangular, and Q and Z are
 | 
						|
*     orthogonal.
 | 
						|
*
 | 
						|
      CALL SGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
 | 
						|
     $             WORK( P+MN+1 ), LWORK-P-MN, INFO )
 | 
						|
      LOPT = INT( WORK( P+MN+1 ) )
 | 
						|
*
 | 
						|
*     Update c = Z**T *c = ( c1 ) N-P
 | 
						|
*                          ( c2 ) M+P-N
 | 
						|
*
 | 
						|
      CALL SORMQR( 'Left', 'Transpose', M, 1, MN, A, LDA, WORK( P+1 ),
 | 
						|
     $             C, MAX( 1, M ), WORK( P+MN+1 ), LWORK-P-MN, INFO )
 | 
						|
      LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
 | 
						|
*
 | 
						|
*     Solve T12*x2 = d for x2
 | 
						|
*
 | 
						|
      IF( P.GT.0 ) THEN
 | 
						|
         CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', P, 1,
 | 
						|
     $                B( 1, N-P+1 ), LDB, D, P, INFO )
 | 
						|
*
 | 
						|
         IF( INFO.GT.0 ) THEN
 | 
						|
            INFO = 1
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Put the solution in X
 | 
						|
*
 | 
						|
         CALL SCOPY( P, D, 1, X( N-P+1 ), 1 )
 | 
						|
*
 | 
						|
*        Update c1
 | 
						|
*
 | 
						|
         CALL SGEMV( 'No transpose', N-P, P, -ONE, A( 1, N-P+1 ), LDA,
 | 
						|
     $               D, 1, ONE, C, 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Solve R11*x1 = c1 for x1
 | 
						|
*
 | 
						|
      IF( N.GT.P ) THEN
 | 
						|
         CALL STRTRS( 'Upper', 'No transpose', 'Non-unit', N-P, 1,
 | 
						|
     $                A, LDA, C, N-P, INFO )
 | 
						|
*
 | 
						|
         IF( INFO.GT.0 ) THEN
 | 
						|
            INFO = 2
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Put the solutions in X
 | 
						|
*
 | 
						|
         CALL SCOPY( N-P, C, 1, X, 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the residual vector:
 | 
						|
*
 | 
						|
      IF( M.LT.N ) THEN
 | 
						|
         NR = M + P - N
 | 
						|
         IF( NR.GT.0 )
 | 
						|
     $      CALL SGEMV( 'No transpose', NR, N-M, -ONE, A( N-P+1, M+1 ),
 | 
						|
     $                  LDA, D( NR+1 ), 1, ONE, C( N-P+1 ), 1 )
 | 
						|
      ELSE
 | 
						|
         NR = P
 | 
						|
      END IF
 | 
						|
      IF( NR.GT.0 ) THEN
 | 
						|
         CALL STRMV( 'Upper', 'No transpose', 'Non unit', NR,
 | 
						|
     $               A( N-P+1, N-P+1 ), LDA, D, 1 )
 | 
						|
         CALL SAXPY( NR, -ONE, D, 1, C( N-P+1 ), 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Backward transformation x = Q**T*x
 | 
						|
*
 | 
						|
      CALL SORMRQ( 'Left', 'Transpose', N, 1, P, B, LDB, WORK( 1 ), X,
 | 
						|
     $             N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
 | 
						|
      WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGGLSE
 | 
						|
*
 | 
						|
      END
 |