320 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			320 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DORBDB6
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DORBDB6 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb6.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb6.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb6.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
 | 
						|
*                           LDQ2, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
 | 
						|
*      $                   N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*>\verbatim
 | 
						|
*>
 | 
						|
*> DORBDB6 orthogonalizes the column vector
 | 
						|
*>      X = [ X1 ]
 | 
						|
*>          [ X2 ]
 | 
						|
*> with respect to the columns of
 | 
						|
*>      Q = [ Q1 ] .
 | 
						|
*>          [ Q2 ]
 | 
						|
*> The Euclidean norm of X must be one and the columns of Q must be
 | 
						|
*> orthonormal. The orthogonalized vector will be zero if and only if it
 | 
						|
*> lies entirely in the range of Q.
 | 
						|
*>
 | 
						|
*> The projection is computed with at most two iterations of the
 | 
						|
*> classical Gram-Schmidt algorithm, see
 | 
						|
*> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error
 | 
						|
*>   analysis of the Gram-Schmidt algorithm with reorthogonalization."
 | 
						|
*>   2002. CERFACS Technical Report No. TR/PA/02/33. URL:
 | 
						|
*>   https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf
 | 
						|
*>
 | 
						|
*>\endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M1
 | 
						|
*> \verbatim
 | 
						|
*>          M1 is INTEGER
 | 
						|
*>           The dimension of X1 and the number of rows in Q1. 0 <= M1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M2
 | 
						|
*> \verbatim
 | 
						|
*>          M2 is INTEGER
 | 
						|
*>           The dimension of X2 and the number of rows in Q2. 0 <= M2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           The number of columns in Q1 and Q2. 0 <= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X1
 | 
						|
*> \verbatim
 | 
						|
*>          X1 is DOUBLE PRECISION array, dimension (M1)
 | 
						|
*>           On entry, the top part of the vector to be orthogonalized.
 | 
						|
*>           On exit, the top part of the projected vector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX1
 | 
						|
*> \verbatim
 | 
						|
*>          INCX1 is INTEGER
 | 
						|
*>           Increment for entries of X1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X2
 | 
						|
*> \verbatim
 | 
						|
*>          X2 is DOUBLE PRECISION array, dimension (M2)
 | 
						|
*>           On entry, the bottom part of the vector to be
 | 
						|
*>           orthogonalized. On exit, the bottom part of the projected
 | 
						|
*>           vector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCX2
 | 
						|
*> \verbatim
 | 
						|
*>          INCX2 is INTEGER
 | 
						|
*>           Increment for entries of X2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Q1
 | 
						|
*> \verbatim
 | 
						|
*>          Q1 is DOUBLE PRECISION array, dimension (LDQ1, N)
 | 
						|
*>           The top part of the orthonormal basis matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ1
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ1 is INTEGER
 | 
						|
*>           The leading dimension of Q1. LDQ1 >= M1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Q2
 | 
						|
*> \verbatim
 | 
						|
*>          Q2 is DOUBLE PRECISION array, dimension (LDQ2, N)
 | 
						|
*>           The bottom part of the orthonormal basis matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ2
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ2 is INTEGER
 | 
						|
*>           The leading dimension of Q2. LDQ2 >= M2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>           The dimension of the array WORK. LWORK >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>           = 0:  successful exit.
 | 
						|
*>           < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
 | 
						|
     $                    LDQ2, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
 | 
						|
     $                   N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ALPHA, REALONE, REALZERO
 | 
						|
      PARAMETER          ( ALPHA = 0.01D0, REALONE = 1.0D0,
 | 
						|
     $                     REALZERO = 0.0D0 )
 | 
						|
      DOUBLE PRECISION   NEGONE, ONE, ZERO
 | 
						|
      PARAMETER          ( NEGONE = -1.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IX
 | 
						|
      DOUBLE PRECISION   EPS, NORM, NORM_NEW, SCL, SSQ
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMV, DLASSQ, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Function ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M1 .LT. 0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( M2 .LT. 0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N .LT. 0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( INCX1 .LT. 1 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( INCX2 .LT. 1 ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      ELSE IF( LWORK .LT. N ) THEN
 | 
						|
         INFO = -13
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO .NE. 0 ) THEN
 | 
						|
         CALL XERBLA( 'DORBDB6', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Precision' )
 | 
						|
*
 | 
						|
*     First, project X onto the orthogonal complement of Q's column
 | 
						|
*     space
 | 
						|
*
 | 
						|
*     Christoph Conrads: In debugging mode the norm should be computed
 | 
						|
*     and an assertion added comparing the norm with one. Alas, Fortran
 | 
						|
*     never made it into 1989 when assert() was introduced into the C
 | 
						|
*     programming language.
 | 
						|
      NORM = REALONE
 | 
						|
*
 | 
						|
      IF( M1 .EQ. 0 ) THEN
 | 
						|
         DO I = 1, N
 | 
						|
            WORK(I) = ZERO
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         CALL DGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
 | 
						|
     $               1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL DGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
 | 
						|
*
 | 
						|
      CALL DGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
 | 
						|
     $            INCX1 )
 | 
						|
      CALL DGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
 | 
						|
     $            INCX2 )
 | 
						|
*
 | 
						|
      SCL = REALZERO
 | 
						|
      SSQ = REALZERO
 | 
						|
      CALL DLASSQ( M1, X1, INCX1, SCL, SSQ )
 | 
						|
      CALL DLASSQ( M2, X2, INCX2, SCL, SSQ )
 | 
						|
      NORM_NEW = SCL * SQRT(SSQ)
 | 
						|
*
 | 
						|
*     If projection is sufficiently large in norm, then stop.
 | 
						|
*     If projection is zero, then stop.
 | 
						|
*     Otherwise, project again.
 | 
						|
*
 | 
						|
      IF( NORM_NEW .GE. ALPHA * NORM ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( NORM_NEW .LE. N * EPS * NORM ) THEN
 | 
						|
         DO IX = 1, 1 + (M1-1)*INCX1, INCX1
 | 
						|
           X1( IX ) = ZERO
 | 
						|
         END DO
 | 
						|
         DO IX = 1, 1 + (M2-1)*INCX2, INCX2
 | 
						|
           X2( IX ) = ZERO
 | 
						|
         END DO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      NORM = NORM_NEW
 | 
						|
*
 | 
						|
      DO I = 1, N
 | 
						|
         WORK(I) = ZERO
 | 
						|
      END DO
 | 
						|
*
 | 
						|
      IF( M1 .EQ. 0 ) THEN
 | 
						|
         DO I = 1, N
 | 
						|
            WORK(I) = ZERO
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         CALL DGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
 | 
						|
     $               1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALL DGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
 | 
						|
*
 | 
						|
      CALL DGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
 | 
						|
     $            INCX1 )
 | 
						|
      CALL DGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
 | 
						|
     $            INCX2 )
 | 
						|
*
 | 
						|
      SCL = REALZERO
 | 
						|
      SSQ = REALZERO
 | 
						|
      CALL DLASSQ( M1, X1, INCX1, SCL, SSQ )
 | 
						|
      CALL DLASSQ( M2, X2, INCX2, SCL, SSQ )
 | 
						|
      NORM_NEW = SCL * SQRT(SSQ)
 | 
						|
*
 | 
						|
*     If second projection is sufficiently large in norm, then do
 | 
						|
*     nothing more. Alternatively, if it shrunk significantly, then
 | 
						|
*     truncate it to zero.
 | 
						|
*
 | 
						|
      IF( NORM_NEW .LT. ALPHA * NORM ) THEN
 | 
						|
         DO IX = 1, 1 + (M1-1)*INCX1, INCX1
 | 
						|
            X1(IX) = ZERO
 | 
						|
         END DO
 | 
						|
         DO IX = 1, 1 + (M2-1)*INCX2, INCX2
 | 
						|
            X2(IX) = ZERO
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DORBDB6
 | 
						|
*
 | 
						|
      END
 |