254 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLARRK computes one eigenvalue of a symmetric tridiagonal matrix T to suitable accuracy.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLARRK + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrk.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrk.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrk.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLARRK( N, IW, GL, GU,
 | 
						|
*                           D, E2, PIVMIN, RELTOL, W, WERR, INFO)
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER   INFO, IW, N
 | 
						|
*       DOUBLE PRECISION    PIVMIN, RELTOL, GL, GU, W, WERR
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), E2( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLARRK computes one eigenvalue of a symmetric tridiagonal
 | 
						|
*> matrix T to suitable accuracy. This is an auxiliary code to be
 | 
						|
*> called from DSTEMR.
 | 
						|
*>
 | 
						|
*> To avoid overflow, the matrix must be scaled so that its
 | 
						|
*> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
 | 
						|
*> accuracy, it should not be much smaller than that.
 | 
						|
*>
 | 
						|
*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
 | 
						|
*> Matrix", Report CS41, Computer Science Dept., Stanford
 | 
						|
*> University, July 21, 1966.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the tridiagonal matrix T.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IW
 | 
						|
*> \verbatim
 | 
						|
*>          IW is INTEGER
 | 
						|
*>          The index of the eigenvalues to be returned.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GL
 | 
						|
*> \verbatim
 | 
						|
*>          GL is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] GU
 | 
						|
*> \verbatim
 | 
						|
*>          GU is DOUBLE PRECISION
 | 
						|
*>          An upper and a lower bound on the eigenvalue.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The n diagonal elements of the tridiagonal matrix T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E2
 | 
						|
*> \verbatim
 | 
						|
*>          E2 is DOUBLE PRECISION array, dimension (N-1)
 | 
						|
*>          The (n-1) squared off-diagonal elements of the tridiagonal matrix T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PIVMIN
 | 
						|
*> \verbatim
 | 
						|
*>          PIVMIN is DOUBLE PRECISION
 | 
						|
*>          The minimum pivot allowed in the Sturm sequence for T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RELTOL
 | 
						|
*> \verbatim
 | 
						|
*>          RELTOL is DOUBLE PRECISION
 | 
						|
*>          The minimum relative width of an interval.  When an interval
 | 
						|
*>          is narrower than RELTOL times the larger (in
 | 
						|
*>          magnitude) endpoint, then it is considered to be
 | 
						|
*>          sufficiently small, i.e., converged.  Note: this should
 | 
						|
*>          always be at least radix*machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is DOUBLE PRECISION
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WERR
 | 
						|
*> \verbatim
 | 
						|
*>          WERR is DOUBLE PRECISION
 | 
						|
*>          The error bound on the corresponding eigenvalue approximation
 | 
						|
*>          in W.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:       Eigenvalue converged
 | 
						|
*>          = -1:      Eigenvalue did NOT converge
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par Internal Parameters:
 | 
						|
*  =========================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>  FUDGE   DOUBLE PRECISION, default = 2
 | 
						|
*>          A "fudge factor" to widen the Gershgorin intervals.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup OTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLARRK( N, IW, GL, GU,
 | 
						|
     $                    D, E2, PIVMIN, RELTOL, W, WERR, INFO)
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER   INFO, IW, N
 | 
						|
      DOUBLE PRECISION    PIVMIN, RELTOL, GL, GU, W, WERR
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * ), E2( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   FUDGE, HALF, TWO, ZERO
 | 
						|
      PARAMETER          ( HALF = 0.5D0, TWO = 2.0D0,
 | 
						|
     $                     FUDGE = TWO, ZERO = 0.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER   I, IT, ITMAX, NEGCNT
 | 
						|
      DOUBLE PRECISION   ATOLI, EPS, LEFT, MID, RIGHT, RTOLI, TMP1,
 | 
						|
     $                   TMP2, TNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL   DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, INT, LOG, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         INFO = 0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
      EPS = DLAMCH( 'P' )
 | 
						|
 | 
						|
      TNORM = MAX( ABS( GL ), ABS( GU ) )
 | 
						|
      RTOLI = RELTOL
 | 
						|
      ATOLI = FUDGE*TWO*PIVMIN
 | 
						|
 | 
						|
      ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
 | 
						|
     $           LOG( TWO ) ) + 2
 | 
						|
 | 
						|
      INFO = -1
 | 
						|
 | 
						|
      LEFT = GL - FUDGE*TNORM*EPS*N - FUDGE*TWO*PIVMIN
 | 
						|
      RIGHT = GU + FUDGE*TNORM*EPS*N + FUDGE*TWO*PIVMIN
 | 
						|
      IT = 0
 | 
						|
 | 
						|
 10   CONTINUE
 | 
						|
*
 | 
						|
*     Check if interval converged or maximum number of iterations reached
 | 
						|
*
 | 
						|
      TMP1 = ABS( RIGHT - LEFT )
 | 
						|
      TMP2 = MAX( ABS(RIGHT), ABS(LEFT) )
 | 
						|
      IF( TMP1.LT.MAX( ATOLI, PIVMIN, RTOLI*TMP2 ) ) THEN
 | 
						|
         INFO = 0
 | 
						|
         GOTO 30
 | 
						|
      ENDIF
 | 
						|
      IF(IT.GT.ITMAX)
 | 
						|
     $   GOTO 30
 | 
						|
 | 
						|
*
 | 
						|
*     Count number of negative pivots for mid-point
 | 
						|
*
 | 
						|
      IT = IT + 1
 | 
						|
      MID = HALF * (LEFT + RIGHT)
 | 
						|
      NEGCNT = 0
 | 
						|
      TMP1 = D( 1 ) - MID
 | 
						|
      IF( ABS( TMP1 ).LT.PIVMIN )
 | 
						|
     $   TMP1 = -PIVMIN
 | 
						|
      IF( TMP1.LE.ZERO )
 | 
						|
     $   NEGCNT = NEGCNT + 1
 | 
						|
*
 | 
						|
      DO 20 I = 2, N
 | 
						|
         TMP1 = D( I ) - E2( I-1 ) / TMP1 - MID
 | 
						|
         IF( ABS( TMP1 ).LT.PIVMIN )
 | 
						|
     $      TMP1 = -PIVMIN
 | 
						|
         IF( TMP1.LE.ZERO )
 | 
						|
     $      NEGCNT = NEGCNT + 1
 | 
						|
 20   CONTINUE
 | 
						|
 | 
						|
      IF(NEGCNT.GE.IW) THEN
 | 
						|
         RIGHT = MID
 | 
						|
      ELSE
 | 
						|
         LEFT = MID
 | 
						|
      ENDIF
 | 
						|
      GOTO 10
 | 
						|
 | 
						|
 30   CONTINUE
 | 
						|
*
 | 
						|
*     Converged or maximum number of iterations reached
 | 
						|
*
 | 
						|
      W = HALF * (LEFT + RIGHT)
 | 
						|
      WERR = HALF * ABS( RIGHT - LEFT )
 | 
						|
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLARRK
 | 
						|
*
 | 
						|
      END
 |