163 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			163 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLAEV2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claev2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claev2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claev2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       REAL               CS1, RT1, RT2
 | 
						|
*       COMPLEX            A, B, C, SN1
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
 | 
						|
*>    [  A         B  ]
 | 
						|
*>    [  CONJG(B)  C  ].
 | 
						|
*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
 | 
						|
*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
 | 
						|
*> eigenvector for RT1, giving the decomposition
 | 
						|
*>
 | 
						|
*> [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ]
 | 
						|
*> [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ].
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX
 | 
						|
*>         The (1,1) element of the 2-by-2 matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX
 | 
						|
*>         The (1,2) element and the conjugate of the (2,1) element of
 | 
						|
*>         the 2-by-2 matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX
 | 
						|
*>         The (2,2) element of the 2-by-2 matrix.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT1
 | 
						|
*> \verbatim
 | 
						|
*>          RT1 is REAL
 | 
						|
*>         The eigenvalue of larger absolute value.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RT2
 | 
						|
*> \verbatim
 | 
						|
*>          RT2 is REAL
 | 
						|
*>         The eigenvalue of smaller absolute value.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] CS1
 | 
						|
*> \verbatim
 | 
						|
*>          CS1 is REAL
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SN1
 | 
						|
*> \verbatim
 | 
						|
*>          SN1 is COMPLEX
 | 
						|
*>         The vector (CS1, SN1) is a unit right eigenvector for RT1.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  RT1 is accurate to a few ulps barring over/underflow.
 | 
						|
*>
 | 
						|
*>  RT2 may be inaccurate if there is massive cancellation in the
 | 
						|
*>  determinant A*C-B*B; higher precision or correctly rounded or
 | 
						|
*>  correctly truncated arithmetic would be needed to compute RT2
 | 
						|
*>  accurately in all cases.
 | 
						|
*>
 | 
						|
*>  CS1 and SN1 are accurate to a few ulps barring over/underflow.
 | 
						|
*>
 | 
						|
*>  Overflow is possible only if RT1 is within a factor of 5 of overflow.
 | 
						|
*>  Underflow is harmless if the input data is 0 or exceeds
 | 
						|
*>     underflow_threshold / macheps.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      REAL               CS1, RT1, RT2
 | 
						|
      COMPLEX            A, B, C, SN1
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0E0 )
 | 
						|
      REAL               ONE
 | 
						|
      PARAMETER          ( ONE = 1.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               T
 | 
						|
      COMPLEX            W
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLAEV2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, CONJG, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( ABS( B ).EQ.ZERO ) THEN
 | 
						|
         W = ONE
 | 
						|
      ELSE
 | 
						|
         W = CONJG( B ) / ABS( B )
 | 
						|
      END IF
 | 
						|
      CALL SLAEV2( REAL( A ), ABS( B ), REAL( C ), RT1, RT2, CS1, T )
 | 
						|
      SN1 = W*T
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLAEV2
 | 
						|
*
 | 
						|
      END
 |