194 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZPTT02
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZPTT02( UPLO, N, NRHS, D, E, X, LDX, B, LDB, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDB, LDX, N, NRHS
 | 
						|
*       DOUBLE PRECISION   RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * )
 | 
						|
*       COMPLEX*16         B( LDB, * ), E( * ), X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZPTT02 computes the residual for the solution to a symmetric
 | 
						|
*> tridiagonal system of equations:
 | 
						|
*>    RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the superdiagonal or the subdiagonal of the
 | 
						|
*>          tridiagonal matrix A is stored.
 | 
						|
*>          = 'U':  E is the superdiagonal of A
 | 
						|
*>          = 'L':  E is the subdiagonal of A
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrices B and X.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          The n diagonal elements of the tridiagonal matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX*16 array, dimension (N-1)
 | 
						|
*>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
 | 
						|
*>          The n by nrhs matrix of solution vectors X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the n by nrhs matrix of right hand side vectors B.
 | 
						|
*>          On exit, B is overwritten with the difference B - A*X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          norm(B - A*X) / (norm(A) * norm(X) * EPS)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZPTT02( UPLO, N, NRHS, D, E, X, LDX, B, LDB, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDB, LDX, N, NRHS
 | 
						|
      DOUBLE PRECISION   RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * )
 | 
						|
      COMPLEX*16         B( LDB, * ), E( * ), X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J
 | 
						|
      DOUBLE PRECISION   ANORM, BNORM, EPS, XNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DZASUM, ZLANHT
 | 
						|
      EXTERNAL           DLAMCH, DZASUM, ZLANHT
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZLAPTM
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the 1-norm of the tridiagonal matrix A.
 | 
						|
*
 | 
						|
      ANORM = ZLANHT( '1', N, D, E )
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute B - A*X.
 | 
						|
*
 | 
						|
      CALL ZLAPTM( UPLO, N, NRHS, -ONE, D, E, X, LDX, ONE, B, LDB )
 | 
						|
*
 | 
						|
*     Compute the maximum over the number of right hand sides of
 | 
						|
*        norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      DO 10 J = 1, NRHS
 | 
						|
         BNORM = DZASUM( N, B( 1, J ), 1 )
 | 
						|
         XNORM = DZASUM( N, X( 1, J ), 1 )
 | 
						|
         IF( XNORM.LE.ZERO ) THEN
 | 
						|
            RESID = ONE / EPS
 | 
						|
         ELSE
 | 
						|
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZPTT02
 | 
						|
*
 | 
						|
      END
 |