233 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b STRT02
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE STRT02( UPLO, TRANS, DIAG, N, NRHS, A, LDA, X, LDX, B,
 | 
						|
*                          LDB, WORK, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, TRANS, UPLO
 | 
						|
*       INTEGER            LDA, LDB, LDX, N, NRHS
 | 
						|
*       REAL               RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), B( LDB, * ), WORK( * ),
 | 
						|
*      $                   X( LDX, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> STRT02 computes the residual for the computed solution to a
 | 
						|
*> triangular system of linear equations op(A)*X = B, where A is a
 | 
						|
*> triangular matrix. The test ratio is the maximum over
 | 
						|
*>    norm(b - op(A)*x) / ( ||op(A)||_1 * norm(x) * EPS ),
 | 
						|
*> where op(A) = A or A**T, b is the column of B, x is the solution
 | 
						|
*> vector, and EPS is the machine epsilon.
 | 
						|
*> The norm used is the 1-norm.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix A is upper or lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>          Specifies the operation applied to A.
 | 
						|
*>          = 'N':  A    * X = B  (No transpose)
 | 
						|
*>          = 'T':  A**T * X = B  (Transpose)
 | 
						|
*>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          Specifies whether or not the matrix A is unit triangular.
 | 
						|
*>          = 'N':  Non-unit triangular
 | 
						|
*>          = 'U':  Unit triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrices X and B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The triangular matrix A.  If UPLO = 'U', the leading n by n
 | 
						|
*>          upper triangular part of the array A contains the upper
 | 
						|
*>          triangular matrix, and the strictly lower triangular part of
 | 
						|
*>          A is not referenced.  If UPLO = 'L', the leading n by n lower
 | 
						|
*>          triangular part of the array A contains the lower triangular
 | 
						|
*>          matrix, and the strictly upper triangular part of A is not
 | 
						|
*>          referenced.  If DIAG = 'U', the diagonal elements of A are
 | 
						|
*>          also not referenced and are assumed to be 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is REAL array, dimension (LDX,NRHS)
 | 
						|
*>          The computed solution vectors for the system of linear
 | 
						|
*>          equations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,NRHS)
 | 
						|
*>          The right hand side vectors for the system of linear
 | 
						|
*>          equations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          The maximum over the number of right hand sides of
 | 
						|
*>          norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE STRT02( UPLO, TRANS, DIAG, N, NRHS, A, LDA, X, LDX, B,
 | 
						|
     $                   LDB, WORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, TRANS, UPLO
 | 
						|
      INTEGER            LDA, LDB, LDX, N, NRHS
 | 
						|
      REAL               RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), B( LDB, * ), WORK( * ),
 | 
						|
     $                   X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            J
 | 
						|
      REAL               ANORM, BNORM, EPS, XNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SASUM, SLAMCH, SLANTR
 | 
						|
      EXTERNAL           LSAME, SASUM, SLAMCH, SLANTR
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SAXPY, SCOPY, STRMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0 or NRHS = 0
 | 
						|
*
 | 
						|
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the 1-norm of op(A).
 | 
						|
*
 | 
						|
      IF( LSAME( TRANS, 'N' ) ) THEN
 | 
						|
         ANORM = SLANTR( '1', UPLO, DIAG, N, N, A, LDA, WORK )
 | 
						|
      ELSE
 | 
						|
         ANORM = SLANTR( 'I', UPLO, DIAG, N, N, A, LDA, WORK )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0.
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the maximum over the number of right hand sides of
 | 
						|
*        norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS )
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      DO 10 J = 1, NRHS
 | 
						|
         CALL SCOPY( N, X( 1, J ), 1, WORK, 1 )
 | 
						|
         CALL STRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 )
 | 
						|
         CALL SAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
 | 
						|
         BNORM = SASUM( N, WORK, 1 )
 | 
						|
         XNORM = SASUM( N, X( 1, J ), 1 )
 | 
						|
         IF( XNORM.LE.ZERO ) THEN
 | 
						|
            RESID = ONE / EPS
 | 
						|
         ELSE
 | 
						|
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
 | 
						|
         END IF
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of STRT02
 | 
						|
*
 | 
						|
      END
 |