761 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			761 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSTEBZ
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSTEBZ + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstebz.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstebz.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstebz.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E,
 | |
| *                          M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK,
 | |
| *                          INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          ORDER, RANGE
 | |
| *       INTEGER            IL, INFO, IU, M, N, NSPLIT
 | |
| *       REAL               ABSTOL, VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * )
 | |
| *       REAL               D( * ), E( * ), W( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSTEBZ computes the eigenvalues of a symmetric tridiagonal
 | |
| *> matrix T.  The user may ask for all eigenvalues, all eigenvalues
 | |
| *> in the half-open interval (VL, VU], or the IL-th through IU-th
 | |
| *> eigenvalues.
 | |
| *>
 | |
| *> To avoid overflow, the matrix must be scaled so that its
 | |
| *> largest element is no greater than overflow**(1/2) * underflow**(1/4) in absolute value, and for greatest
 | |
| *> accuracy, it should not be much smaller than that.
 | |
| *>
 | |
| *> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
 | |
| *> Matrix", Report CS41, Computer Science Dept., Stanford
 | |
| *> University, July 21, 1966.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': ("All")   all eigenvalues will be found.
 | |
| *>          = 'V': ("Value") all eigenvalues in the half-open interval
 | |
| *>                           (VL, VU] will be found.
 | |
| *>          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
 | |
| *>                           entire matrix) will be found.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ORDER
 | |
| *> \verbatim
 | |
| *>          ORDER is CHARACTER*1
 | |
| *>          = 'B': ("By Block") the eigenvalues will be grouped by
 | |
| *>                              split-off block (see IBLOCK, ISPLIT) and
 | |
| *>                              ordered from smallest to largest within
 | |
| *>                              the block.
 | |
| *>          = 'E': ("Entire matrix")
 | |
| *>                              the eigenvalues for the entire matrix
 | |
| *>                              will be ordered from smallest to
 | |
| *>                              largest.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the tridiagonal matrix T.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VU
 | |
| *> \verbatim
 | |
| *>          VU is REAL
 | |
| *>
 | |
| *>          If RANGE='V', the lower and upper bounds of the interval to
 | |
| *>          be searched for eigenvalues.  Eigenvalues less than or equal
 | |
| *>          to VL, or greater than VU, will not be returned.  VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>
 | |
| *>          If RANGE='I', the indices (in ascending order) of the
 | |
| *>          smallest and largest eigenvalues to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ABSTOL
 | |
| *> \verbatim
 | |
| *>          ABSTOL is REAL
 | |
| *>          The absolute tolerance for the eigenvalues.  An eigenvalue
 | |
| *>          (or cluster) is considered to be located if it has been
 | |
| *>          determined to lie in an interval whose width is ABSTOL or
 | |
| *>          less.  If ABSTOL is less than or equal to zero, then ULP*|T|
 | |
| *>          will be used, where |T| means the 1-norm of T.
 | |
| *>
 | |
| *>          Eigenvalues will be computed most accurately when ABSTOL is
 | |
| *>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The n diagonal elements of the tridiagonal matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          The (n-1) off-diagonal elements of the tridiagonal matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The actual number of eigenvalues found. 0 <= M <= N.
 | |
| *>          (See also the description of INFO=2,3.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] NSPLIT
 | |
| *> \verbatim
 | |
| *>          NSPLIT is INTEGER
 | |
| *>          The number of diagonal blocks in the matrix T.
 | |
| *>          1 <= NSPLIT <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          On exit, the first M elements of W will contain the
 | |
| *>          eigenvalues.  (SSTEBZ may use the remaining N-M elements as
 | |
| *>          workspace.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IBLOCK
 | |
| *> \verbatim
 | |
| *>          IBLOCK is INTEGER array, dimension (N)
 | |
| *>          At each row/column j where E(j) is zero or small, the
 | |
| *>          matrix T is considered to split into a block diagonal
 | |
| *>          matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which
 | |
| *>          block (from 1 to the number of blocks) the eigenvalue W(i)
 | |
| *>          belongs.  (SSTEBZ may use the remaining N-M elements as
 | |
| *>          workspace.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ISPLIT
 | |
| *> \verbatim
 | |
| *>          ISPLIT is INTEGER array, dimension (N)
 | |
| *>          The splitting points, at which T breaks up into submatrices.
 | |
| *>          The first submatrix consists of rows/columns 1 to ISPLIT(1),
 | |
| *>          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
 | |
| *>          etc., and the NSPLIT-th consists of rows/columns
 | |
| *>          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
 | |
| *>          (Only the first NSPLIT elements will actually be used, but
 | |
| *>          since the user cannot know a priori what value NSPLIT will
 | |
| *>          have, N words must be reserved for ISPLIT.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (4*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (3*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  some or all of the eigenvalues failed to converge or
 | |
| *>                were not computed:
 | |
| *>                =1 or 3: Bisection failed to converge for some
 | |
| *>                        eigenvalues; these eigenvalues are flagged by a
 | |
| *>                        negative block number.  The effect is that the
 | |
| *>                        eigenvalues may not be as accurate as the
 | |
| *>                        absolute and relative tolerances.  This is
 | |
| *>                        generally caused by unexpectedly inaccurate
 | |
| *>                        arithmetic.
 | |
| *>                =2 or 3: RANGE='I' only: Not all of the eigenvalues
 | |
| *>                        IL:IU were found.
 | |
| *>                        Effect: M < IU+1-IL
 | |
| *>                        Cause:  non-monotonic arithmetic, causing the
 | |
| *>                                Sturm sequence to be non-monotonic.
 | |
| *>                        Cure:   recalculate, using RANGE='A', and pick
 | |
| *>                                out eigenvalues IL:IU.  In some cases,
 | |
| *>                                increasing the PARAMETER "FUDGE" may
 | |
| *>                                make things work.
 | |
| *>                = 4:    RANGE='I', and the Gershgorin interval
 | |
| *>                        initially used was too small.  No eigenvalues
 | |
| *>                        were computed.
 | |
| *>                        Probable cause: your machine has sloppy
 | |
| *>                                        floating-point arithmetic.
 | |
| *>                        Cure: Increase the PARAMETER "FUDGE",
 | |
| *>                              recompile, and try again.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Internal Parameters:
 | |
| *  =========================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  RELFAC  REAL, default = 2.0e0
 | |
| *>          The relative tolerance.  An interval (a,b] lies within
 | |
| *>          "relative tolerance" if  b-a < RELFAC*ulp*max(|a|,|b|),
 | |
| *>          where "ulp" is the machine precision (distance from 1 to
 | |
| *>          the next larger floating point number.)
 | |
| *>
 | |
| *>  FUDGE   REAL, default = 2
 | |
| *>          A "fudge factor" to widen the Gershgorin intervals.  Ideally,
 | |
| *>          a value of 1 should work, but on machines with sloppy
 | |
| *>          arithmetic, this needs to be larger.  The default for
 | |
| *>          publicly released versions should be large enough to handle
 | |
| *>          the worst machine around.  Note that this has no effect
 | |
| *>          on accuracy of the solution.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E,
 | |
|      $                   M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          ORDER, RANGE
 | |
|       INTEGER            IL, INFO, IU, M, N, NSPLIT
 | |
|       REAL               ABSTOL, VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * )
 | |
|       REAL               D( * ), E( * ), W( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE, TWO, HALF
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
 | |
|      $                   HALF = 1.0E0 / TWO )
 | |
|       REAL               FUDGE, RELFAC
 | |
|       PARAMETER          ( FUDGE = 2.1E0, RELFAC = 2.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NCNVRG, TOOFEW
 | |
|       INTEGER            IB, IBEGIN, IDISCL, IDISCU, IE, IEND, IINFO,
 | |
|      $                   IM, IN, IOFF, IORDER, IOUT, IRANGE, ITMAX,
 | |
|      $                   ITMP1, IW, IWOFF, J, JB, JDISC, JE, NB, NWL,
 | |
|      $                   NWU
 | |
|       REAL               ATOLI, BNORM, GL, GU, PIVMIN, RTOLI, SAFEMN,
 | |
|      $                   TMP1, TMP2, TNORM, ULP, WKILL, WL, WLU, WU, WUL
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IDUMMA( 1 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           LSAME, ILAENV, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLAEBZ, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, INT, LOG, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Decode RANGE
 | |
| *
 | |
|       IF( LSAME( RANGE, 'A' ) ) THEN
 | |
|          IRANGE = 1
 | |
|       ELSE IF( LSAME( RANGE, 'V' ) ) THEN
 | |
|          IRANGE = 2
 | |
|       ELSE IF( LSAME( RANGE, 'I' ) ) THEN
 | |
|          IRANGE = 3
 | |
|       ELSE
 | |
|          IRANGE = 0
 | |
|       END IF
 | |
| *
 | |
| *     Decode ORDER
 | |
| *
 | |
|       IF( LSAME( ORDER, 'B' ) ) THEN
 | |
|          IORDER = 2
 | |
|       ELSE IF( LSAME( ORDER, 'E' ) ) THEN
 | |
|          IORDER = 1
 | |
|       ELSE
 | |
|          IORDER = 0
 | |
|       END IF
 | |
| *
 | |
| *     Check for Errors
 | |
| *
 | |
|       IF( IRANGE.LE.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( IORDER.LE.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( IRANGE.EQ.2 ) THEN
 | |
|          IF( VL.GE.VU ) INFO = -5
 | |
|       ELSE IF( IRANGE.EQ.3 .AND. ( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) )
 | |
|      $          THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( IRANGE.EQ.3 .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) )
 | |
|      $          THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSTEBZ', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize error flags
 | |
| *
 | |
|       INFO = 0
 | |
|       NCNVRG = .FALSE.
 | |
|       TOOFEW = .FALSE.
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       M = 0
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Simplifications:
 | |
| *
 | |
|       IF( IRANGE.EQ.3 .AND. IL.EQ.1 .AND. IU.EQ.N )
 | |
|      $   IRANGE = 1
 | |
| *
 | |
| *     Get machine constants
 | |
| *     NB is the minimum vector length for vector bisection, or 0
 | |
| *     if only scalar is to be done.
 | |
| *
 | |
|       SAFEMN = SLAMCH( 'S' )
 | |
|       ULP = SLAMCH( 'P' )
 | |
|       RTOLI = ULP*RELFAC
 | |
|       NB = ILAENV( 1, 'SSTEBZ', ' ', N, -1, -1, -1 )
 | |
|       IF( NB.LE.1 )
 | |
|      $   NB = 0
 | |
| *
 | |
| *     Special Case when N=1
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          NSPLIT = 1
 | |
|          ISPLIT( 1 ) = 1
 | |
|          IF( IRANGE.EQ.2 .AND. ( VL.GE.D( 1 ) .OR. VU.LT.D( 1 ) ) ) THEN
 | |
|             M = 0
 | |
|          ELSE
 | |
|             W( 1 ) = D( 1 )
 | |
|             IBLOCK( 1 ) = 1
 | |
|             M = 1
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute Splitting Points
 | |
| *
 | |
|       NSPLIT = 1
 | |
|       WORK( N ) = ZERO
 | |
|       PIVMIN = ONE
 | |
| *
 | |
|       DO 10 J = 2, N
 | |
|          TMP1 = E( J-1 )**2
 | |
|          IF( ABS( D( J )*D( J-1 ) )*ULP**2+SAFEMN.GT.TMP1 ) THEN
 | |
|             ISPLIT( NSPLIT ) = J - 1
 | |
|             NSPLIT = NSPLIT + 1
 | |
|             WORK( J-1 ) = ZERO
 | |
|          ELSE
 | |
|             WORK( J-1 ) = TMP1
 | |
|             PIVMIN = MAX( PIVMIN, TMP1 )
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       ISPLIT( NSPLIT ) = N
 | |
|       PIVMIN = PIVMIN*SAFEMN
 | |
| *
 | |
| *     Compute Interval and ATOLI
 | |
| *
 | |
|       IF( IRANGE.EQ.3 ) THEN
 | |
| *
 | |
| *        RANGE='I': Compute the interval containing eigenvalues
 | |
| *                   IL through IU.
 | |
| *
 | |
| *        Compute Gershgorin interval for entire (split) matrix
 | |
| *        and use it as the initial interval
 | |
| *
 | |
|          GU = D( 1 )
 | |
|          GL = D( 1 )
 | |
|          TMP1 = ZERO
 | |
| *
 | |
|          DO 20 J = 1, N - 1
 | |
|             TMP2 = SQRT( WORK( J ) )
 | |
|             GU = MAX( GU, D( J )+TMP1+TMP2 )
 | |
|             GL = MIN( GL, D( J )-TMP1-TMP2 )
 | |
|             TMP1 = TMP2
 | |
|    20    CONTINUE
 | |
| *
 | |
|          GU = MAX( GU, D( N )+TMP1 )
 | |
|          GL = MIN( GL, D( N )-TMP1 )
 | |
|          TNORM = MAX( ABS( GL ), ABS( GU ) )
 | |
|          GL = GL - FUDGE*TNORM*ULP*N - FUDGE*TWO*PIVMIN
 | |
|          GU = GU + FUDGE*TNORM*ULP*N + FUDGE*PIVMIN
 | |
| *
 | |
| *        Compute Iteration parameters
 | |
| *
 | |
|          ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
 | |
|      $           LOG( TWO ) ) + 2
 | |
|          IF( ABSTOL.LE.ZERO ) THEN
 | |
|             ATOLI = ULP*TNORM
 | |
|          ELSE
 | |
|             ATOLI = ABSTOL
 | |
|          END IF
 | |
| *
 | |
|          WORK( N+1 ) = GL
 | |
|          WORK( N+2 ) = GL
 | |
|          WORK( N+3 ) = GU
 | |
|          WORK( N+4 ) = GU
 | |
|          WORK( N+5 ) = GL
 | |
|          WORK( N+6 ) = GU
 | |
|          IWORK( 1 ) = -1
 | |
|          IWORK( 2 ) = -1
 | |
|          IWORK( 3 ) = N + 1
 | |
|          IWORK( 4 ) = N + 1
 | |
|          IWORK( 5 ) = IL - 1
 | |
|          IWORK( 6 ) = IU
 | |
| *
 | |
|          CALL SLAEBZ( 3, ITMAX, N, 2, 2, NB, ATOLI, RTOLI, PIVMIN, D, E,
 | |
|      $                WORK, IWORK( 5 ), WORK( N+1 ), WORK( N+5 ), IOUT,
 | |
|      $                IWORK, W, IBLOCK, IINFO )
 | |
| *
 | |
|          IF( IWORK( 6 ).EQ.IU ) THEN
 | |
|             WL = WORK( N+1 )
 | |
|             WLU = WORK( N+3 )
 | |
|             NWL = IWORK( 1 )
 | |
|             WU = WORK( N+4 )
 | |
|             WUL = WORK( N+2 )
 | |
|             NWU = IWORK( 4 )
 | |
|          ELSE
 | |
|             WL = WORK( N+2 )
 | |
|             WLU = WORK( N+4 )
 | |
|             NWL = IWORK( 2 )
 | |
|             WU = WORK( N+3 )
 | |
|             WUL = WORK( N+1 )
 | |
|             NWU = IWORK( 3 )
 | |
|          END IF
 | |
| *
 | |
|          IF( NWL.LT.0 .OR. NWL.GE.N .OR. NWU.LT.1 .OR. NWU.GT.N ) THEN
 | |
|             INFO = 4
 | |
|             RETURN
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        RANGE='A' or 'V' -- Set ATOLI
 | |
| *
 | |
|          TNORM = MAX( ABS( D( 1 ) )+ABS( E( 1 ) ),
 | |
|      $           ABS( D( N ) )+ABS( E( N-1 ) ) )
 | |
| *
 | |
|          DO 30 J = 2, N - 1
 | |
|             TNORM = MAX( TNORM, ABS( D( J ) )+ABS( E( J-1 ) )+
 | |
|      $              ABS( E( J ) ) )
 | |
|    30    CONTINUE
 | |
| *
 | |
|          IF( ABSTOL.LE.ZERO ) THEN
 | |
|             ATOLI = ULP*TNORM
 | |
|          ELSE
 | |
|             ATOLI = ABSTOL
 | |
|          END IF
 | |
| *
 | |
|          IF( IRANGE.EQ.2 ) THEN
 | |
|             WL = VL
 | |
|             WU = VU
 | |
|          ELSE
 | |
|             WL = ZERO
 | |
|             WU = ZERO
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU.
 | |
| *     NWL accumulates the number of eigenvalues .le. WL,
 | |
| *     NWU accumulates the number of eigenvalues .le. WU
 | |
| *
 | |
|       M = 0
 | |
|       IEND = 0
 | |
|       INFO = 0
 | |
|       NWL = 0
 | |
|       NWU = 0
 | |
| *
 | |
|       DO 70 JB = 1, NSPLIT
 | |
|          IOFF = IEND
 | |
|          IBEGIN = IOFF + 1
 | |
|          IEND = ISPLIT( JB )
 | |
|          IN = IEND - IOFF
 | |
| *
 | |
|          IF( IN.EQ.1 ) THEN
 | |
| *
 | |
| *           Special Case -- IN=1
 | |
| *
 | |
|             IF( IRANGE.EQ.1 .OR. WL.GE.D( IBEGIN )-PIVMIN )
 | |
|      $         NWL = NWL + 1
 | |
|             IF( IRANGE.EQ.1 .OR. WU.GE.D( IBEGIN )-PIVMIN )
 | |
|      $         NWU = NWU + 1
 | |
|             IF( IRANGE.EQ.1 .OR. ( WL.LT.D( IBEGIN )-PIVMIN .AND. WU.GE.
 | |
|      $          D( IBEGIN )-PIVMIN ) ) THEN
 | |
|                M = M + 1
 | |
|                W( M ) = D( IBEGIN )
 | |
|                IBLOCK( M ) = JB
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           General Case -- IN > 1
 | |
| *
 | |
| *           Compute Gershgorin Interval
 | |
| *           and use it as the initial interval
 | |
| *
 | |
|             GU = D( IBEGIN )
 | |
|             GL = D( IBEGIN )
 | |
|             TMP1 = ZERO
 | |
| *
 | |
|             DO 40 J = IBEGIN, IEND - 1
 | |
|                TMP2 = ABS( E( J ) )
 | |
|                GU = MAX( GU, D( J )+TMP1+TMP2 )
 | |
|                GL = MIN( GL, D( J )-TMP1-TMP2 )
 | |
|                TMP1 = TMP2
 | |
|    40       CONTINUE
 | |
| *
 | |
|             GU = MAX( GU, D( IEND )+TMP1 )
 | |
|             GL = MIN( GL, D( IEND )-TMP1 )
 | |
|             BNORM = MAX( ABS( GL ), ABS( GU ) )
 | |
|             GL = GL - FUDGE*BNORM*ULP*IN - FUDGE*PIVMIN
 | |
|             GU = GU + FUDGE*BNORM*ULP*IN + FUDGE*PIVMIN
 | |
| *
 | |
| *           Compute ATOLI for the current submatrix
 | |
| *
 | |
|             IF( ABSTOL.LE.ZERO ) THEN
 | |
|                ATOLI = ULP*MAX( ABS( GL ), ABS( GU ) )
 | |
|             ELSE
 | |
|                ATOLI = ABSTOL
 | |
|             END IF
 | |
| *
 | |
|             IF( IRANGE.GT.1 ) THEN
 | |
|                IF( GU.LT.WL ) THEN
 | |
|                   NWL = NWL + IN
 | |
|                   NWU = NWU + IN
 | |
|                   GO TO 70
 | |
|                END IF
 | |
|                GL = MAX( GL, WL )
 | |
|                GU = MIN( GU, WU )
 | |
|                IF( GL.GE.GU )
 | |
|      $            GO TO 70
 | |
|             END IF
 | |
| *
 | |
| *           Set Up Initial Interval
 | |
| *
 | |
|             WORK( N+1 ) = GL
 | |
|             WORK( N+IN+1 ) = GU
 | |
|             CALL SLAEBZ( 1, 0, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN,
 | |
|      $                   D( IBEGIN ), E( IBEGIN ), WORK( IBEGIN ),
 | |
|      $                   IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IM,
 | |
|      $                   IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
 | |
| *
 | |
|             NWL = NWL + IWORK( 1 )
 | |
|             NWU = NWU + IWORK( IN+1 )
 | |
|             IWOFF = M - IWORK( 1 )
 | |
| *
 | |
| *           Compute Eigenvalues
 | |
| *
 | |
|             ITMAX = INT( ( LOG( GU-GL+PIVMIN )-LOG( PIVMIN ) ) /
 | |
|      $              LOG( TWO ) ) + 2
 | |
|             CALL SLAEBZ( 2, ITMAX, IN, IN, 1, NB, ATOLI, RTOLI, PIVMIN,
 | |
|      $                   D( IBEGIN ), E( IBEGIN ), WORK( IBEGIN ),
 | |
|      $                   IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IOUT,
 | |
|      $                   IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
 | |
| *
 | |
| *           Copy Eigenvalues Into W and IBLOCK
 | |
| *           Use -JB for block number for unconverged eigenvalues.
 | |
| *
 | |
|             DO 60 J = 1, IOUT
 | |
|                TMP1 = HALF*( WORK( J+N )+WORK( J+IN+N ) )
 | |
| *
 | |
| *              Flag non-convergence.
 | |
| *
 | |
|                IF( J.GT.IOUT-IINFO ) THEN
 | |
|                   NCNVRG = .TRUE.
 | |
|                   IB = -JB
 | |
|                ELSE
 | |
|                   IB = JB
 | |
|                END IF
 | |
|                DO 50 JE = IWORK( J ) + 1 + IWOFF,
 | |
|      $                 IWORK( J+IN ) + IWOFF
 | |
|                   W( JE ) = TMP1
 | |
|                   IBLOCK( JE ) = IB
 | |
|    50          CONTINUE
 | |
|    60       CONTINUE
 | |
| *
 | |
|             M = M + IM
 | |
|          END IF
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU
 | |
| *     If NWL+1 < IL or NWU > IU, discard extra eigenvalues.
 | |
| *
 | |
|       IF( IRANGE.EQ.3 ) THEN
 | |
|          IM = 0
 | |
|          IDISCL = IL - 1 - NWL
 | |
|          IDISCU = NWU - IU
 | |
| *
 | |
|          IF( IDISCL.GT.0 .OR. IDISCU.GT.0 ) THEN
 | |
|             DO 80 JE = 1, M
 | |
|                IF( W( JE ).LE.WLU .AND. IDISCL.GT.0 ) THEN
 | |
|                   IDISCL = IDISCL - 1
 | |
|                ELSE IF( W( JE ).GE.WUL .AND. IDISCU.GT.0 ) THEN
 | |
|                   IDISCU = IDISCU - 1
 | |
|                ELSE
 | |
|                   IM = IM + 1
 | |
|                   W( IM ) = W( JE )
 | |
|                   IBLOCK( IM ) = IBLOCK( JE )
 | |
|                END IF
 | |
|    80       CONTINUE
 | |
|             M = IM
 | |
|          END IF
 | |
|          IF( IDISCL.GT.0 .OR. IDISCU.GT.0 ) THEN
 | |
| *
 | |
| *           Code to deal with effects of bad arithmetic:
 | |
| *           Some low eigenvalues to be discarded are not in (WL,WLU],
 | |
| *           or high eigenvalues to be discarded are not in (WUL,WU]
 | |
| *           so just kill off the smallest IDISCL/largest IDISCU
 | |
| *           eigenvalues, by simply finding the smallest/largest
 | |
| *           eigenvalue(s).
 | |
| *
 | |
| *           (If N(w) is monotone non-decreasing, this should never
 | |
| *               happen.)
 | |
| *
 | |
|             IF( IDISCL.GT.0 ) THEN
 | |
|                WKILL = WU
 | |
|                DO 100 JDISC = 1, IDISCL
 | |
|                   IW = 0
 | |
|                   DO 90 JE = 1, M
 | |
|                      IF( IBLOCK( JE ).NE.0 .AND.
 | |
|      $                   ( W( JE ).LT.WKILL .OR. IW.EQ.0 ) ) THEN
 | |
|                         IW = JE
 | |
|                         WKILL = W( JE )
 | |
|                      END IF
 | |
|    90             CONTINUE
 | |
|                   IBLOCK( IW ) = 0
 | |
|   100          CONTINUE
 | |
|             END IF
 | |
|             IF( IDISCU.GT.0 ) THEN
 | |
| *
 | |
|                WKILL = WL
 | |
|                DO 120 JDISC = 1, IDISCU
 | |
|                   IW = 0
 | |
|                   DO 110 JE = 1, M
 | |
|                      IF( IBLOCK( JE ).NE.0 .AND.
 | |
|      $                   ( W( JE ).GT.WKILL .OR. IW.EQ.0 ) ) THEN
 | |
|                         IW = JE
 | |
|                         WKILL = W( JE )
 | |
|                      END IF
 | |
|   110             CONTINUE
 | |
|                   IBLOCK( IW ) = 0
 | |
|   120          CONTINUE
 | |
|             END IF
 | |
|             IM = 0
 | |
|             DO 130 JE = 1, M
 | |
|                IF( IBLOCK( JE ).NE.0 ) THEN
 | |
|                   IM = IM + 1
 | |
|                   W( IM ) = W( JE )
 | |
|                   IBLOCK( IM ) = IBLOCK( JE )
 | |
|                END IF
 | |
|   130       CONTINUE
 | |
|             M = IM
 | |
|          END IF
 | |
|          IF( IDISCL.LT.0 .OR. IDISCU.LT.0 ) THEN
 | |
|             TOOFEW = .TRUE.
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     If ORDER='B', do nothing -- the eigenvalues are already sorted
 | |
| *        by block.
 | |
| *     If ORDER='E', sort the eigenvalues from smallest to largest
 | |
| *
 | |
|       IF( IORDER.EQ.1 .AND. NSPLIT.GT.1 ) THEN
 | |
|          DO 150 JE = 1, M - 1
 | |
|             IE = 0
 | |
|             TMP1 = W( JE )
 | |
|             DO 140 J = JE + 1, M
 | |
|                IF( W( J ).LT.TMP1 ) THEN
 | |
|                   IE = J
 | |
|                   TMP1 = W( J )
 | |
|                END IF
 | |
|   140       CONTINUE
 | |
| *
 | |
|             IF( IE.NE.0 ) THEN
 | |
|                ITMP1 = IBLOCK( IE )
 | |
|                W( IE ) = W( JE )
 | |
|                IBLOCK( IE ) = IBLOCK( JE )
 | |
|                W( JE ) = TMP1
 | |
|                IBLOCK( JE ) = ITMP1
 | |
|             END IF
 | |
|   150    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( NCNVRG )
 | |
|      $   INFO = INFO + 1
 | |
|       IF( TOOFEW )
 | |
|      $   INFO = INFO + 2
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSTEBZ
 | |
| *
 | |
|       END
 |