314 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			314 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DTZRZF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DTZRZF + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtzrzf.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtzrzf.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtzrzf.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
 | |
| *> to upper triangular form by means of orthogonal transformations.
 | |
| *>
 | |
| *> The upper trapezoidal matrix A is factored as
 | |
| *>
 | |
| *>    A = ( R  0 ) * Z,
 | |
| *>
 | |
| *> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
 | |
| *> triangular matrix.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the leading M-by-N upper trapezoidal part of the
 | |
| *>          array A must contain the matrix to be factorized.
 | |
| *>          On exit, the leading M-by-M upper triangular part of A
 | |
| *>          contains the upper triangular matrix R, and elements M+1 to
 | |
| *>          N of the first M rows of A, with the array TAU, represent the
 | |
| *>          orthogonal matrix Z as a product of M elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is DOUBLE PRECISION array, dimension (M)
 | |
| *>          The scalar factors of the elementary reflectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,M).
 | |
| *>          For optimum performance LWORK >= M*NB, where NB is
 | |
| *>          the optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date April 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The N-by-N matrix Z can be computed by
 | |
| *>
 | |
| *>     Z =  Z(1)*Z(2)* ... *Z(M)
 | |
| *>
 | |
| *>  where each N-by-N Z(k) is given by
 | |
| *>
 | |
| *>     Z(k) = I - tau(k)*v(k)*v(k)**T
 | |
| *>
 | |
| *>  with v(k) is the kth row vector of the M-by-N matrix
 | |
| *>
 | |
| *>     V = ( I   A(:,M+1:N) )
 | |
| *>
 | |
| *>  I is the M-by-M identity matrix, A(:,M+1:N) 
 | |
| *>  is the output stored in A on exit from DTZRZF,
 | |
| *>  and tau(k) is the kth element of the array TAU.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     April 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            I, IB, IWS, KI, KK, LDWORK, LWKMIN, LWKOPT,
 | |
|      $                   M1, MU, NB, NBMIN, NX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, DLARZB, DLARZT, DLATRZ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.M ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( M.EQ.0 .OR. M.EQ.N ) THEN
 | |
|             LWKOPT = 1
 | |
|             LWKMIN = 1
 | |
|          ELSE
 | |
| *
 | |
| *           Determine the block size.
 | |
| *
 | |
|             NB = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
 | |
|             LWKOPT = M*NB
 | |
|             LWKMIN = MAX( 1, M )
 | |
|          END IF
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -7
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DTZRZF', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       ELSE IF( M.EQ.N ) THEN
 | |
|          DO 10 I = 1, N
 | |
|             TAU( I ) = ZERO
 | |
|    10    CONTINUE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       NBMIN = 2
 | |
|       NX = 1
 | |
|       IWS = M
 | |
|       IF( NB.GT.1 .AND. NB.LT.M ) THEN
 | |
| *
 | |
| *        Determine when to cross over from blocked to unblocked code.
 | |
| *
 | |
|          NX = MAX( 0, ILAENV( 3, 'DGERQF', ' ', M, N, -1, -1 ) )
 | |
|          IF( NX.LT.M ) THEN
 | |
| *
 | |
| *           Determine if workspace is large enough for blocked code.
 | |
| *
 | |
|             LDWORK = M
 | |
|             IWS = LDWORK*NB
 | |
|             IF( LWORK.LT.IWS ) THEN
 | |
| *
 | |
| *              Not enough workspace to use optimal NB:  reduce NB and
 | |
| *              determine the minimum value of NB.
 | |
| *
 | |
|                NB = LWORK / LDWORK
 | |
|                NBMIN = MAX( 2, ILAENV( 2, 'DGERQF', ' ', M, N, -1,
 | |
|      $                 -1 ) )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
 | |
| *
 | |
| *        Use blocked code initially.
 | |
| *        The last kk rows are handled by the block method.
 | |
| *
 | |
|          M1 = MIN( M+1, N )
 | |
|          KI = ( ( M-NX-1 ) / NB )*NB
 | |
|          KK = MIN( M, KI+NB )
 | |
| *
 | |
|          DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
 | |
|             IB = MIN( M-I+1, NB )
 | |
| *
 | |
| *           Compute the TZ factorization of the current block
 | |
| *           A(i:i+ib-1,i:n)
 | |
| *
 | |
|             CALL DLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
 | |
|      $                   WORK )
 | |
|             IF( I.GT.1 ) THEN
 | |
| *
 | |
| *              Form the triangular factor of the block reflector
 | |
| *              H = H(i+ib-1) . . . H(i+1) H(i)
 | |
| *
 | |
|                CALL DLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
 | |
|      $                      LDA, TAU( I ), WORK, LDWORK )
 | |
| *
 | |
| *              Apply H to A(1:i-1,i:n) from the right
 | |
| *
 | |
|                CALL DLARZB( 'Right', 'No transpose', 'Backward',
 | |
|      $                      'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
 | |
|      $                      LDA, WORK, LDWORK, A( 1, I ), LDA,
 | |
|      $                      WORK( IB+1 ), LDWORK )
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|          MU = I + NB - 1
 | |
|       ELSE
 | |
|          MU = M
 | |
|       END IF
 | |
| *
 | |
| *     Use unblocked code to factor the last or only block
 | |
| *
 | |
|       IF( MU.GT.0 )
 | |
|      $   CALL DLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DTZRZF
 | |
| *
 | |
|       END
 |