1106 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1106 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b29 = 1.;
 | |
| static doublereal c_b30 = 0.;
 | |
| static doublereal c_b33 = -1.;
 | |
| 
 | |
| /* > \brief \b DLATM5 */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD, */
 | |
| /*                          E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA, */
 | |
| /*                          QBLCKB ) */
 | |
| 
 | |
| /*       INTEGER            LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N, */
 | |
| /*      $                   PRTYPE, QBLCKA, QBLCKB */
 | |
| /*       DOUBLE PRECISION   ALPHA */
 | |
| /*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ), */
 | |
| /*      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ), */
 | |
| /*      $                   L( LDL, * ), R( LDR, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DLATM5 generates matrices involved in the Generalized Sylvester */
 | |
| /* > equation: */
 | |
| /* > */
 | |
| /* >     A * R - L * B = C */
 | |
| /* >     D * R - L * E = F */
 | |
| /* > */
 | |
| /* > They also satisfy (the diagonalization condition) */
 | |
| /* > */
 | |
| /* >  [ I -L ] ( [ A  -C ], [ D -F ] ) [ I  R ] = ( [ A    ], [ D    ] ) */
 | |
| /* >  [    I ] ( [     B ]  [    E ] ) [    I ]   ( [    B ]  [    E ] ) */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] PRTYPE */
 | |
| /* > \verbatim */
 | |
| /* >          PRTYPE is INTEGER */
 | |
| /* >          "Points" to a certain type of the matrices to generate */
 | |
| /* >          (see further details). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          Specifies the order of A and D and the number of rows in */
 | |
| /* >          C, F,  R and L. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          Specifies the order of B and E and the number of columns in */
 | |
| /* >          C, F, R and L. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is DOUBLE PRECISION array, dimension (LDA, M). */
 | |
| /* >          On exit A M-by-M is initialized according to PRTYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is DOUBLE PRECISION array, dimension (LDB, N). */
 | |
| /* >          On exit B N-by-N is initialized according to PRTYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is DOUBLE PRECISION array, dimension (LDC, N). */
 | |
| /* >          On exit C M-by-N is initialized according to PRTYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDC */
 | |
| /* > \verbatim */
 | |
| /* >          LDC is INTEGER */
 | |
| /* >          The leading dimension of C. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension (LDD, M). */
 | |
| /* >          On exit D M-by-M is initialized according to PRTYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDD */
 | |
| /* > \verbatim */
 | |
| /* >          LDD is INTEGER */
 | |
| /* >          The leading dimension of D. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is DOUBLE PRECISION array, dimension (LDE, N). */
 | |
| /* >          On exit E N-by-N is initialized according to PRTYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDE */
 | |
| /* > \verbatim */
 | |
| /* >          LDE is INTEGER */
 | |
| /* >          The leading dimension of E. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] F */
 | |
| /* > \verbatim */
 | |
| /* >          F is DOUBLE PRECISION array, dimension (LDF, N). */
 | |
| /* >          On exit F M-by-N is initialized according to PRTYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDF */
 | |
| /* > \verbatim */
 | |
| /* >          LDF is INTEGER */
 | |
| /* >          The leading dimension of F. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] R */
 | |
| /* > \verbatim */
 | |
| /* >          R is DOUBLE PRECISION array, dimension (LDR, N). */
 | |
| /* >          On exit R M-by-N is initialized according to PRTYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDR */
 | |
| /* > \verbatim */
 | |
| /* >          LDR is INTEGER */
 | |
| /* >          The leading dimension of R. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] L */
 | |
| /* > \verbatim */
 | |
| /* >          L is DOUBLE PRECISION array, dimension (LDL, N). */
 | |
| /* >          On exit L M-by-N is initialized according to PRTYPE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDL */
 | |
| /* > \verbatim */
 | |
| /* >          LDL is INTEGER */
 | |
| /* >          The leading dimension of L. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ALPHA */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHA is DOUBLE PRECISION */
 | |
| /* >          Parameter used in generating PRTYPE = 1 and 5 matrices. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] QBLCKA */
 | |
| /* > \verbatim */
 | |
| /* >          QBLCKA is INTEGER */
 | |
| /* >          When PRTYPE = 3, specifies the distance between 2-by-2 */
 | |
| /* >          blocks on the diagonal in A. Otherwise, QBLCKA is not */
 | |
| /* >          referenced. QBLCKA > 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] QBLCKB */
 | |
| /* > \verbatim */
 | |
| /* >          QBLCKB is INTEGER */
 | |
| /* >          When PRTYPE = 3, specifies the distance between 2-by-2 */
 | |
| /* >          blocks on the diagonal in B. Otherwise, QBLCKB is not */
 | |
| /* >          referenced. QBLCKB > 1. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup double_matgen */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices */
 | |
| /* > */
 | |
| /* >             A : if (i == j) then A(i, j) = 1.0 */
 | |
| /* >                 if (j == i + 1) then A(i, j) = -1.0 */
 | |
| /* >                 else A(i, j) = 0.0,            i, j = 1...M */
 | |
| /* > */
 | |
| /* >             B : if (i == j) then B(i, j) = 1.0 - ALPHA */
 | |
| /* >                 if (j == i + 1) then B(i, j) = 1.0 */
 | |
| /* >                 else B(i, j) = 0.0,            i, j = 1...N */
 | |
| /* > */
 | |
| /* >             D : if (i == j) then D(i, j) = 1.0 */
 | |
| /* >                 else D(i, j) = 0.0,            i, j = 1...M */
 | |
| /* > */
 | |
| /* >             E : if (i == j) then E(i, j) = 1.0 */
 | |
| /* >                 else E(i, j) = 0.0,            i, j = 1...N */
 | |
| /* > */
 | |
| /* >             L =  R are chosen from [-10...10], */
 | |
| /* >                  which specifies the right hand sides (C, F). */
 | |
| /* > */
 | |
| /* >  PRTYPE = 2 or 3: Triangular and/or quasi- triangular. */
 | |
| /* > */
 | |
| /* >             A : if (i <= j) then A(i, j) = [-1...1] */
 | |
| /* >                 else A(i, j) = 0.0,             i, j = 1...M */
 | |
| /* > */
 | |
| /* >                 if (PRTYPE = 3) then */
 | |
| /* >                    A(k + 1, k + 1) = A(k, k) */
 | |
| /* >                    A(k + 1, k) = [-1...1] */
 | |
| /* >                    sign(A(k, k + 1) = -(sin(A(k + 1, k)) */
 | |
| /* >                        k = 1, M - 1, QBLCKA */
 | |
| /* > */
 | |
| /* >             B : if (i <= j) then B(i, j) = [-1...1] */
 | |
| /* >                 else B(i, j) = 0.0,            i, j = 1...N */
 | |
| /* > */
 | |
| /* >                 if (PRTYPE = 3) then */
 | |
| /* >                    B(k + 1, k + 1) = B(k, k) */
 | |
| /* >                    B(k + 1, k) = [-1...1] */
 | |
| /* >                    sign(B(k, k + 1) = -(sign(B(k + 1, k)) */
 | |
| /* >                        k = 1, N - 1, QBLCKB */
 | |
| /* > */
 | |
| /* >             D : if (i <= j) then D(i, j) = [-1...1]. */
 | |
| /* >                 else D(i, j) = 0.0,            i, j = 1...M */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >             E : if (i <= j) then D(i, j) = [-1...1] */
 | |
| /* >                 else E(i, j) = 0.0,            i, j = 1...N */
 | |
| /* > */
 | |
| /* >                 L, R are chosen from [-10...10], */
 | |
| /* >                 which specifies the right hand sides (C, F). */
 | |
| /* > */
 | |
| /* >  PRTYPE = 4 Full */
 | |
| /* >             A(i, j) = [-10...10] */
 | |
| /* >             D(i, j) = [-1...1]    i,j = 1...M */
 | |
| /* >             B(i, j) = [-10...10] */
 | |
| /* >             E(i, j) = [-1...1]    i,j = 1...N */
 | |
| /* >             R(i, j) = [-10...10] */
 | |
| /* >             L(i, j) = [-1...1]    i = 1..M ,j = 1...N */
 | |
| /* > */
 | |
| /* >             L, R specifies the right hand sides (C, F). */
 | |
| /* > */
 | |
| /* >  PRTYPE = 5 special case common and/or close eigs. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void dlatm5_(integer *prtype, integer *m, integer *n, 
 | |
| 	doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
 | |
| 	c__, integer *ldc, doublereal *d__, integer *ldd, doublereal *e, 
 | |
| 	integer *lde, doublereal *f, integer *ldf, doublereal *r__, integer *
 | |
| 	ldr, doublereal *l, integer *ldl, doublereal *alpha, integer *qblcka, 
 | |
| 	integer *qblckb)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, 
 | |
| 	    d_offset, e_dim1, e_offset, f_dim1, f_offset, l_dim1, l_offset, 
 | |
| 	    r_dim1, r_offset, i__1, i__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, j, k;
 | |
|     extern /* Subroutine */ void dgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *);
 | |
|     doublereal imeps, reeps;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     c_dim1 = *ldc;
 | |
|     c_offset = 1 + c_dim1 * 1;
 | |
|     c__ -= c_offset;
 | |
|     d_dim1 = *ldd;
 | |
|     d_offset = 1 + d_dim1 * 1;
 | |
|     d__ -= d_offset;
 | |
|     e_dim1 = *lde;
 | |
|     e_offset = 1 + e_dim1 * 1;
 | |
|     e -= e_offset;
 | |
|     f_dim1 = *ldf;
 | |
|     f_offset = 1 + f_dim1 * 1;
 | |
|     f -= f_offset;
 | |
|     r_dim1 = *ldr;
 | |
|     r_offset = 1 + r_dim1 * 1;
 | |
|     r__ -= r_offset;
 | |
|     l_dim1 = *ldl;
 | |
|     l_offset = 1 + l_dim1 * 1;
 | |
|     l -= l_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (*prtype == 1) {
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *m;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		if (i__ == j) {
 | |
| 		    a[i__ + j * a_dim1] = 1.;
 | |
| 		    d__[i__ + j * d_dim1] = 1.;
 | |
| 		} else if (i__ == j - 1) {
 | |
| 		    a[i__ + j * a_dim1] = -1.;
 | |
| 		    d__[i__ + j * d_dim1] = 0.;
 | |
| 		} else {
 | |
| 		    a[i__ + j * a_dim1] = 0.;
 | |
| 		    d__[i__ + j * d_dim1] = 0.;
 | |
| 		}
 | |
| /* L10: */
 | |
| 	    }
 | |
| /* L20: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		if (i__ == j) {
 | |
| 		    b[i__ + j * b_dim1] = 1. - *alpha;
 | |
| 		    e[i__ + j * e_dim1] = 1.;
 | |
| 		} else if (i__ == j - 1) {
 | |
| 		    b[i__ + j * b_dim1] = 1.;
 | |
| 		    e[i__ + j * e_dim1] = 0.;
 | |
| 		} else {
 | |
| 		    b[i__ + j * b_dim1] = 0.;
 | |
| 		    e[i__ + j * e_dim1] = 0.;
 | |
| 		}
 | |
| /* L30: */
 | |
| 	    }
 | |
| /* L40: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		r__[i__ + j * r_dim1] = (.5 - sin((doublereal) (i__ / j))) * 
 | |
| 			20.;
 | |
| 		l[i__ + j * l_dim1] = r__[i__ + j * r_dim1];
 | |
| /* L50: */
 | |
| 	    }
 | |
| /* L60: */
 | |
| 	}
 | |
| 
 | |
|     } else if (*prtype == 2 || *prtype == 3) {
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *m;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		if (i__ <= j) {
 | |
| 		    a[i__ + j * a_dim1] = (.5 - sin((doublereal) i__)) * 2.;
 | |
| 		    d__[i__ + j * d_dim1] = (.5 - sin((doublereal) (i__ * j)))
 | |
| 			     * 2.;
 | |
| 		} else {
 | |
| 		    a[i__ + j * a_dim1] = 0.;
 | |
| 		    d__[i__ + j * d_dim1] = 0.;
 | |
| 		}
 | |
| /* L70: */
 | |
| 	    }
 | |
| /* L80: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		if (i__ <= j) {
 | |
| 		    b[i__ + j * b_dim1] = (.5 - sin((doublereal) (i__ + j))) *
 | |
| 			     2.;
 | |
| 		    e[i__ + j * e_dim1] = (.5 - sin((doublereal) j)) * 2.;
 | |
| 		} else {
 | |
| 		    b[i__ + j * b_dim1] = 0.;
 | |
| 		    e[i__ + j * e_dim1] = 0.;
 | |
| 		}
 | |
| /* L90: */
 | |
| 	    }
 | |
| /* L100: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		r__[i__ + j * r_dim1] = (.5 - sin((doublereal) (i__ * j))) * 
 | |
| 			20.;
 | |
| 		l[i__ + j * l_dim1] = (.5 - sin((doublereal) (i__ + j))) * 
 | |
| 			20.;
 | |
| /* L110: */
 | |
| 	    }
 | |
| /* L120: */
 | |
| 	}
 | |
| 
 | |
| 	if (*prtype == 3) {
 | |
| 	    if (*qblcka <= 1) {
 | |
| 		*qblcka = 2;
 | |
| 	    }
 | |
| 	    i__1 = *m - 1;
 | |
| 	    i__2 = *qblcka;
 | |
| 	    for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
 | |
| 		a[k + 1 + (k + 1) * a_dim1] = a[k + k * a_dim1];
 | |
| 		a[k + 1 + k * a_dim1] = -sin(a[k + (k + 1) * a_dim1]);
 | |
| /* L130: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (*qblckb <= 1) {
 | |
| 		*qblckb = 2;
 | |
| 	    }
 | |
| 	    i__2 = *n - 1;
 | |
| 	    i__1 = *qblckb;
 | |
| 	    for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
 | |
| 		b[k + 1 + (k + 1) * b_dim1] = b[k + k * b_dim1];
 | |
| 		b[k + 1 + k * b_dim1] = -sin(b[k + (k + 1) * b_dim1]);
 | |
| /* L140: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     } else if (*prtype == 4) {
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *m;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		a[i__ + j * a_dim1] = (.5 - sin((doublereal) (i__ * j))) * 
 | |
| 			20.;
 | |
| 		d__[i__ + j * d_dim1] = (.5 - sin((doublereal) (i__ + j))) * 
 | |
| 			2.;
 | |
| /* L150: */
 | |
| 	    }
 | |
| /* L160: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		b[i__ + j * b_dim1] = (.5 - sin((doublereal) (i__ + j))) * 
 | |
| 			20.;
 | |
| 		e[i__ + j * e_dim1] = (.5 - sin((doublereal) (i__ * j))) * 2.;
 | |
| /* L170: */
 | |
| 	    }
 | |
| /* L180: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		r__[i__ + j * r_dim1] = (.5 - sin((doublereal) (j / i__))) * 
 | |
| 			20.;
 | |
| 		l[i__ + j * l_dim1] = (.5 - sin((doublereal) (i__ * j))) * 2.;
 | |
| /* L190: */
 | |
| 	    }
 | |
| /* L200: */
 | |
| 	}
 | |
| 
 | |
|     } else if (*prtype >= 5) {
 | |
| 	reeps = 20. / *alpha;
 | |
| 	imeps = -1.5 / *alpha;
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (j = 1; j <= i__2; ++j) {
 | |
| 		r__[i__ + j * r_dim1] = (.5 - sin((doublereal) (i__ * j))) * *
 | |
| 			alpha / 20.;
 | |
| 		l[i__ + j * l_dim1] = (.5 - sin((doublereal) (i__ + j))) * *
 | |
| 			alpha / 20.;
 | |
| /* L210: */
 | |
| 	    }
 | |
| /* L220: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    d__[i__ + i__ * d_dim1] = 1.;
 | |
| /* L230: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    if (i__ <= 4) {
 | |
| 		a[i__ + i__ * a_dim1] = 1.;
 | |
| 		if (i__ > 2) {
 | |
| 		    a[i__ + i__ * a_dim1] = reeps + 1.;
 | |
| 		}
 | |
| 		if (i__ % 2 != 0 && i__ < *m) {
 | |
| 		    a[i__ + (i__ + 1) * a_dim1] = imeps;
 | |
| 		} else if (i__ > 1) {
 | |
| 		    a[i__ + (i__ - 1) * a_dim1] = -imeps;
 | |
| 		}
 | |
| 	    } else if (i__ <= 8) {
 | |
| 		if (i__ <= 6) {
 | |
| 		    a[i__ + i__ * a_dim1] = reeps;
 | |
| 		} else {
 | |
| 		    a[i__ + i__ * a_dim1] = -reeps;
 | |
| 		}
 | |
| 		if (i__ % 2 != 0 && i__ < *m) {
 | |
| 		    a[i__ + (i__ + 1) * a_dim1] = 1.;
 | |
| 		} else if (i__ > 1) {
 | |
| 		    a[i__ + (i__ - 1) * a_dim1] = -1.;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		a[i__ + i__ * a_dim1] = 1.;
 | |
| 		if (i__ % 2 != 0 && i__ < *m) {
 | |
| 		    a[i__ + (i__ + 1) * a_dim1] = imeps * 2;
 | |
| 		} else if (i__ > 1) {
 | |
| 		    a[i__ + (i__ - 1) * a_dim1] = -imeps * 2;
 | |
| 		}
 | |
| 	    }
 | |
| /* L240: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    e[i__ + i__ * e_dim1] = 1.;
 | |
| 	    if (i__ <= 4) {
 | |
| 		b[i__ + i__ * b_dim1] = -1.;
 | |
| 		if (i__ > 2) {
 | |
| 		    b[i__ + i__ * b_dim1] = 1. - reeps;
 | |
| 		}
 | |
| 		if (i__ % 2 != 0 && i__ < *n) {
 | |
| 		    b[i__ + (i__ + 1) * b_dim1] = imeps;
 | |
| 		} else if (i__ > 1) {
 | |
| 		    b[i__ + (i__ - 1) * b_dim1] = -imeps;
 | |
| 		}
 | |
| 	    } else if (i__ <= 8) {
 | |
| 		if (i__ <= 6) {
 | |
| 		    b[i__ + i__ * b_dim1] = reeps;
 | |
| 		} else {
 | |
| 		    b[i__ + i__ * b_dim1] = -reeps;
 | |
| 		}
 | |
| 		if (i__ % 2 != 0 && i__ < *n) {
 | |
| 		    b[i__ + (i__ + 1) * b_dim1] = imeps + 1.;
 | |
| 		} else if (i__ > 1) {
 | |
| 		    b[i__ + (i__ - 1) * b_dim1] = -1. - imeps;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		b[i__ + i__ * b_dim1] = 1. - reeps;
 | |
| 		if (i__ % 2 != 0 && i__ < *n) {
 | |
| 		    b[i__ + (i__ + 1) * b_dim1] = imeps * 2;
 | |
| 		} else if (i__ > 1) {
 | |
| 		    b[i__ + (i__ - 1) * b_dim1] = -imeps * 2;
 | |
| 		}
 | |
| 	    }
 | |
| /* L250: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute rhs (C, F) */
 | |
| 
 | |
|     dgemm_("N", "N", m, n, m, &c_b29, &a[a_offset], lda, &r__[r_offset], ldr, 
 | |
| 	    &c_b30, &c__[c_offset], ldc);
 | |
|     dgemm_("N", "N", m, n, n, &c_b33, &l[l_offset], ldl, &b[b_offset], ldb, &
 | |
| 	    c_b29, &c__[c_offset], ldc);
 | |
|     dgemm_("N", "N", m, n, m, &c_b29, &d__[d_offset], ldd, &r__[r_offset], 
 | |
| 	    ldr, &c_b30, &f[f_offset], ldf);
 | |
|     dgemm_("N", "N", m, n, n, &c_b33, &l[l_offset], ldl, &e[e_offset], lde, &
 | |
| 	    c_b29, &f[f_offset], ldf);
 | |
| 
 | |
| /*     End of DLATM5 */
 | |
| 
 | |
|     return;
 | |
| } /* dlatm5_ */
 | |
| 
 |