466 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			466 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZSYTRF_AA
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZSYTRF_AA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_aa.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_aa.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_aa.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            N, LDA, LWORK, INFO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX*16         A( LDA, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZSYTRF_AA computes the factorization of a complex symmetric matrix A
 | |
| *> using the Aasen's algorithm.  The form of the factorization is
 | |
| *>
 | |
| *>    A = U**T*T*U  or  A = L*T*L**T
 | |
| *>
 | |
| *> where U (or L) is a product of permutation and unit upper (lower)
 | |
| *> triangular matrices, and T is a complex symmetric tridiagonal matrix.
 | |
| *>
 | |
| *> This is the blocked version of the algorithm, calling Level 3 BLAS.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | |
| *>          N-by-N upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading N-by-N lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>
 | |
| *>          On exit, the tridiagonal matrix is stored in the diagonals
 | |
| *>          and the subdiagonals of A just below (or above) the diagonals,
 | |
| *>          and L is stored below (or above) the subdiaonals, when UPLO
 | |
| *>          is 'L' (or 'U').
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          On exit, it contains the details of the interchanges, i.e.,
 | |
| *>          the row and column k of A were interchanged with the
 | |
| *>          row and column IPIV(k).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of WORK. LWORK >=MAX(1,2*N). For optimum performance
 | |
| *>          LWORK >= N*(1+NB), where NB is the optimal blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16SYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            N, LDA, LWORK, INFO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX*16         A( LDA, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, UPPER
 | |
|       INTEGER            J, LWKOPT
 | |
|       INTEGER            NB, MJ, NJ, K1, K2, J1, J2, J3, JB
 | |
|       COMPLEX*16         ALPHA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           LSAME, ILAENV
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLASYF_AA, ZGEMM, ZGEMV, ZSCAL, ZCOPY,
 | |
|      $                   ZSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Determine the block size
 | |
| *
 | |
|       NB = ILAENV( 1, 'ZSYTRF_AA', UPLO, N, -1, -1, -1 )
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          LWKOPT = (NB+1)*N
 | |
|          WORK( 1 ) = LWKOPT
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZSYTRF_AA', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return
 | |
| *
 | |
|       IF ( N.EQ.0 ) THEN
 | |
|           RETURN
 | |
|       ENDIF
 | |
|       IPIV( 1 ) = 1
 | |
|       IF ( N.EQ.1 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Adjust block size based on the workspace size
 | |
| *
 | |
|       IF( LWORK.LT.((1+NB)*N) ) THEN
 | |
|          NB = ( LWORK-N ) / N
 | |
|       END IF
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        .....................................................
 | |
| *        Factorize A as U**T*D*U using the upper triangle of A
 | |
| *        .....................................................
 | |
| *
 | |
| *        Copy first row A(1, 1:N) into H(1:n) (stored in WORK(1:N))
 | |
| *
 | |
|          CALL ZCOPY( N, A( 1, 1 ), LDA, WORK( 1 ), 1 )
 | |
| *
 | |
| *        J is the main loop index, increasing from 1 to N in steps of
 | |
| *        JB, where JB is the number of columns factorized by ZLASYF;
 | |
| *        JB is either NB, or N-J+1 for the last block
 | |
| *
 | |
|          J = 0
 | |
|  10      CONTINUE
 | |
|          IF( J.GE.N )
 | |
|      $      GO TO 20
 | |
| *
 | |
| *        each step of the main loop
 | |
| *         J is the last column of the previous panel
 | |
| *         J1 is the first column of the current panel
 | |
| *         K1 identifies if the previous column of the panel has been
 | |
| *          explicitly stored, e.g., K1=1 for the first panel, and
 | |
| *          K1=0 for the rest
 | |
| *
 | |
|          J1 = J + 1
 | |
|          JB = MIN( N-J1+1, NB )
 | |
|          K1 = MAX(1, J)-J
 | |
| *
 | |
| *        Panel factorization
 | |
| *
 | |
|          CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
 | |
|      $                   A( MAX(1, J), J+1 ), LDA,
 | |
|      $                   IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
 | |
| *
 | |
| *        Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
 | |
| *
 | |
|          DO J2 = J+2, MIN(N, J+JB+1)
 | |
|             IPIV( J2 ) = IPIV( J2 ) + J
 | |
|             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
 | |
|                CALL ZSWAP( J1-K1-2, A( 1, J2 ), 1,
 | |
|      $                              A( 1, IPIV(J2) ), 1 )
 | |
|             END IF
 | |
|          END DO
 | |
|          J = J + JB
 | |
| *
 | |
| *        Trailing submatrix update, where
 | |
| *         the row A(J1-1, J2-1:N) stores U(J1, J2+1:N) and
 | |
| *         WORK stores the current block of the auxiriarly matrix H
 | |
| *
 | |
|          IF( J.LT.N ) THEN
 | |
| *
 | |
| *           If first panel and JB=1 (NB=1), then nothing to do
 | |
| *
 | |
|             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
 | |
| *
 | |
| *              Merge rank-1 update with BLAS-3 update
 | |
| *
 | |
|                ALPHA = A( J, J+1 )
 | |
|                A( J, J+1 ) = ONE
 | |
|                CALL ZCOPY( N-J, A( J-1, J+1 ), LDA,
 | |
|      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
 | |
|                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
 | |
| *
 | |
| *              K1 identifies if the previous column of the panel has been
 | |
| *               explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
 | |
| *               while K1=0 and K2=1 for the rest
 | |
| *
 | |
|                IF( J1.GT.1 ) THEN
 | |
| *
 | |
| *                 Not first panel
 | |
| *
 | |
|                   K2 = 1
 | |
|                ELSE
 | |
| *
 | |
| *                 First panel
 | |
| *
 | |
|                   K2 = 0
 | |
| *
 | |
| *                 First update skips the first column
 | |
| *
 | |
|                   JB = JB - 1
 | |
|                END IF
 | |
| *
 | |
|                DO J2 = J+1, N, NB
 | |
|                   NJ = MIN( NB, N-J2+1 )
 | |
| *
 | |
| *                 Update (J2, J2) diagonal block with ZGEMV
 | |
| *
 | |
|                   J3 = J2
 | |
|                   DO MJ = NJ-1, 1, -1
 | |
|                      CALL ZGEMV( 'No transpose', MJ, JB+1,
 | |
|      $                          -ONE, WORK( J3-J1+1+K1*N ), N,
 | |
|      $                                A( J1-K2, J3 ), 1,
 | |
|      $                           ONE, A( J3, J3 ), LDA )
 | |
|                      J3 = J3 + 1
 | |
|                   END DO
 | |
| *
 | |
| *                 Update off-diagonal block of J2-th block row with ZGEMM
 | |
| *
 | |
|                   CALL ZGEMM( 'Transpose', 'Transpose',
 | |
|      $                        NJ, N-J3+1, JB+1,
 | |
|      $                       -ONE, A( J1-K2, J2 ), LDA,
 | |
|      $                             WORK( J3-J1+1+K1*N ), N,
 | |
|      $                        ONE, A( J2, J3 ), LDA )
 | |
|                END DO
 | |
| *
 | |
| *              Recover T( J, J+1 )
 | |
| *
 | |
|                A( J, J+1 ) = ALPHA
 | |
|             END IF
 | |
| *
 | |
| *           WORK(J+1, 1) stores H(J+1, 1)
 | |
| *
 | |
|             CALL ZCOPY( N-J, A( J+1, J+1 ), LDA, WORK( 1 ), 1 )
 | |
|          END IF
 | |
|          GO TO 10
 | |
|       ELSE
 | |
| *
 | |
| *        .....................................................
 | |
| *        Factorize A as L*D*L**T using the lower triangle of A
 | |
| *        .....................................................
 | |
| *
 | |
| *        copy first column A(1:N, 1) into H(1:N, 1)
 | |
| *         (stored in WORK(1:N))
 | |
| *
 | |
|          CALL ZCOPY( N, A( 1, 1 ), 1, WORK( 1 ), 1 )
 | |
| *
 | |
| *        J is the main loop index, increasing from 1 to N in steps of
 | |
| *        JB, where JB is the number of columns factorized by ZLASYF;
 | |
| *        JB is either NB, or N-J+1 for the last block
 | |
| *
 | |
|          J = 0
 | |
|  11      CONTINUE
 | |
|          IF( J.GE.N )
 | |
|      $      GO TO 20
 | |
| *
 | |
| *        each step of the main loop
 | |
| *         J is the last column of the previous panel
 | |
| *         J1 is the first column of the current panel
 | |
| *         K1 identifies if the previous column of the panel has been
 | |
| *          explicitly stored, e.g., K1=1 for the first panel, and
 | |
| *          K1=0 for the rest
 | |
| *
 | |
|          J1 = J+1
 | |
|          JB = MIN( N-J1+1, NB )
 | |
|          K1 = MAX(1, J)-J
 | |
| *
 | |
| *        Panel factorization
 | |
| *
 | |
|          CALL ZLASYF_AA( UPLO, 2-K1, N-J, JB,
 | |
|      $                   A( J+1, MAX(1, J) ), LDA,
 | |
|      $                   IPIV( J+1 ), WORK, N, WORK( N*NB+1 ) )
 | |
| *
 | |
| *        Adjust IPIV and apply it back (J-th step picks (J+1)-th pivot)
 | |
| *
 | |
|          DO J2 = J+2, MIN(N, J+JB+1)
 | |
|             IPIV( J2 ) = IPIV( J2 ) + J
 | |
|             IF( (J2.NE.IPIV(J2)) .AND. ((J1-K1).GT.2) ) THEN
 | |
|                CALL ZSWAP( J1-K1-2, A( J2, 1 ), LDA,
 | |
|      $                              A( IPIV(J2), 1 ), LDA )
 | |
|             END IF
 | |
|          END DO
 | |
|          J = J + JB
 | |
| *
 | |
| *        Trailing submatrix update, where
 | |
| *          A(J2+1, J1-1) stores L(J2+1, J1) and
 | |
| *          WORK(J2+1, 1) stores H(J2+1, 1)
 | |
| *
 | |
|          IF( J.LT.N ) THEN
 | |
| *
 | |
| *           if first panel and JB=1 (NB=1), then nothing to do
 | |
| *
 | |
|             IF( J1.GT.1 .OR. JB.GT.1 ) THEN
 | |
| *
 | |
| *              Merge rank-1 update with BLAS-3 update
 | |
| *
 | |
|                ALPHA = A( J+1, J )
 | |
|                A( J+1, J ) = ONE
 | |
|                CALL ZCOPY( N-J, A( J+1, J-1 ), 1,
 | |
|      $                          WORK( (J+1-J1+1)+JB*N ), 1 )
 | |
|                CALL ZSCAL( N-J, ALPHA, WORK( (J+1-J1+1)+JB*N ), 1 )
 | |
| *
 | |
| *              K1 identifies if the previous column of the panel has been
 | |
| *               explicitly stored, e.g., K1=1 and K2= 0 for the first panel,
 | |
| *               while K1=0 and K2=1 for the rest
 | |
| *
 | |
|                IF( J1.GT.1 ) THEN
 | |
| *
 | |
| *                 Not first panel
 | |
| *
 | |
|                   K2 = 1
 | |
|                ELSE
 | |
| *
 | |
| *                 First panel
 | |
| *
 | |
|                   K2 = 0
 | |
| *
 | |
| *                 First update skips the first column
 | |
| *
 | |
|                   JB = JB - 1
 | |
|                END IF
 | |
| *
 | |
|                DO J2 = J+1, N, NB
 | |
|                   NJ = MIN( NB, N-J2+1 )
 | |
| *
 | |
| *                 Update (J2, J2) diagonal block with ZGEMV
 | |
| *
 | |
|                   J3 = J2
 | |
|                   DO MJ = NJ-1, 1, -1
 | |
|                      CALL ZGEMV( 'No transpose', MJ, JB+1,
 | |
|      $                          -ONE, WORK( J3-J1+1+K1*N ), N,
 | |
|      $                                A( J3, J1-K2 ), LDA,
 | |
|      $                           ONE, A( J3, J3 ), 1 )
 | |
|                      J3 = J3 + 1
 | |
|                   END DO
 | |
| *
 | |
| *                 Update off-diagonal block in J2-th block column with ZGEMM
 | |
| *
 | |
|                   CALL ZGEMM( 'No transpose', 'Transpose',
 | |
|      $                        N-J3+1, NJ, JB+1,
 | |
|      $                       -ONE, WORK( J3-J1+1+K1*N ), N,
 | |
|      $                             A( J2, J1-K2 ), LDA,
 | |
|      $                        ONE, A( J3, J2 ), LDA )
 | |
|                END DO
 | |
| *
 | |
| *              Recover T( J+1, J )
 | |
| *
 | |
|                A( J+1, J ) = ALPHA
 | |
|             END IF
 | |
| *
 | |
| *           WORK(J+1, 1) stores H(J+1, 1)
 | |
| *
 | |
|             CALL ZCOPY( N-J, A( J+1, J+1 ), 1, WORK( 1 ), 1 )
 | |
|          END IF
 | |
|          GO TO 11
 | |
|       END IF
 | |
| *
 | |
|    20 CONTINUE
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZSYTRF_AA
 | |
| *
 | |
|       END
 |