411 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			411 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLASDQ computes the SVD of a real bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLASDQ + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasdq.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasdq.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasdq.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
 | |
| *                          U, LDU, C, LDC, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               C( LDC, * ), D( * ), E( * ), U( LDU, * ),
 | |
| *      $                   VT( LDVT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLASDQ computes the singular value decomposition (SVD) of a real
 | |
| *> (upper or lower) bidiagonal matrix with diagonal D and offdiagonal
 | |
| *> E, accumulating the transformations if desired. Letting B denote
 | |
| *> the input bidiagonal matrix, the algorithm computes orthogonal
 | |
| *> matrices Q and P such that B = Q * S * P**T (P**T denotes the transpose
 | |
| *> of P). The singular values S are overwritten on D.
 | |
| *>
 | |
| *> The input matrix U  is changed to U  * Q  if desired.
 | |
| *> The input matrix VT is changed to P**T * VT if desired.
 | |
| *> The input matrix C  is changed to Q**T * C  if desired.
 | |
| *>
 | |
| *> See "Computing  Small Singular Values of Bidiagonal Matrices With
 | |
| *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
 | |
| *> LAPACK Working Note #3, for a detailed description of the algorithm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>        On entry, UPLO specifies whether the input bidiagonal matrix
 | |
| *>        is upper or lower bidiagonal, and whether it is square are
 | |
| *>        not.
 | |
| *>           UPLO = 'U' or 'u'   B is upper bidiagonal.
 | |
| *>           UPLO = 'L' or 'l'   B is lower bidiagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SQRE
 | |
| *> \verbatim
 | |
| *>          SQRE is INTEGER
 | |
| *>        = 0: then the input matrix is N-by-N.
 | |
| *>        = 1: then the input matrix is N-by-(N+1) if UPLU = 'U' and
 | |
| *>             (N+1)-by-N if UPLU = 'L'.
 | |
| *>
 | |
| *>        The bidiagonal matrix has
 | |
| *>        N = NL + NR + 1 rows and
 | |
| *>        M = N + SQRE >= N columns.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>        On entry, N specifies the number of rows and columns
 | |
| *>        in the matrix. N must be at least 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NCVT
 | |
| *> \verbatim
 | |
| *>          NCVT is INTEGER
 | |
| *>        On entry, NCVT specifies the number of columns of
 | |
| *>        the matrix VT. NCVT must be at least 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRU
 | |
| *> \verbatim
 | |
| *>          NRU is INTEGER
 | |
| *>        On entry, NRU specifies the number of rows of
 | |
| *>        the matrix U. NRU must be at least 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NCC
 | |
| *> \verbatim
 | |
| *>          NCC is INTEGER
 | |
| *>        On entry, NCC specifies the number of columns of
 | |
| *>        the matrix C. NCC must be at least 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>        On entry, D contains the diagonal entries of the
 | |
| *>        bidiagonal matrix whose SVD is desired. On normal exit,
 | |
| *>        D contains the singular values in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array.
 | |
| *>        dimension is (N-1) if SQRE = 0 and N if SQRE = 1.
 | |
| *>        On entry, the entries of E contain the offdiagonal entries
 | |
| *>        of the bidiagonal matrix whose SVD is desired. On normal
 | |
| *>        exit, E will contain 0. If the algorithm does not converge,
 | |
| *>        D and E will contain the diagonal and superdiagonal entries
 | |
| *>        of a bidiagonal matrix orthogonally equivalent to the one
 | |
| *>        given as input.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VT
 | |
| *> \verbatim
 | |
| *>          VT is REAL array, dimension (LDVT, NCVT)
 | |
| *>        On entry, contains a matrix which on exit has been
 | |
| *>        premultiplied by P**T, dimension N-by-NCVT if SQRE = 0
 | |
| *>        and (N+1)-by-NCVT if SQRE = 1 (not referenced if NCVT=0).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>        On entry, LDVT specifies the leading dimension of VT as
 | |
| *>        declared in the calling (sub) program. LDVT must be at
 | |
| *>        least 1. If NCVT is nonzero LDVT must also be at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] U
 | |
| *> \verbatim
 | |
| *>          U is REAL array, dimension (LDU, N)
 | |
| *>        On entry, contains a  matrix which on exit has been
 | |
| *>        postmultiplied by Q, dimension NRU-by-N if SQRE = 0
 | |
| *>        and NRU-by-(N+1) if SQRE = 1 (not referenced if NRU=0).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>        On entry, LDU  specifies the leading dimension of U as
 | |
| *>        declared in the calling (sub) program. LDU must be at
 | |
| *>        least max( 1, NRU ) .
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (LDC, NCC)
 | |
| *>        On entry, contains an N-by-NCC matrix which on exit
 | |
| *>        has been premultiplied by Q**T  dimension N-by-NCC if SQRE = 0
 | |
| *>        and (N+1)-by-NCC if SQRE = 1 (not referenced if NCC=0).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>        On entry, LDC  specifies the leading dimension of C as
 | |
| *>        declared in the calling (sub) program. LDC must be at
 | |
| *>        least 1. If NCC is nonzero, LDC must also be at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (4*N)
 | |
| *>        Workspace. Only referenced if one of NCVT, NRU, or NCC is
 | |
| *>        nonzero, and if N is at least 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>        On exit, a value of 0 indicates a successful exit.
 | |
| *>        If INFO < 0, argument number -INFO is illegal.
 | |
| *>        If INFO > 0, the algorithm did not converge, and INFO
 | |
| *>        specifies how many superdiagonals did not converge.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Huan Ren, Computer Science Division, University of
 | |
| *>     California at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLASDQ( UPLO, SQRE, N, NCVT, NRU, NCC, D, E, VT, LDVT,
 | |
|      $                   U, LDU, C, LDC, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU, SQRE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               C( LDC, * ), D( * ), E( * ), U( LDU, * ),
 | |
|      $                   VT( LDVT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ROTATE
 | |
|       INTEGER            I, ISUB, IUPLO, J, NP1, SQRE1
 | |
|       REAL               CS, R, SMIN, SN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SBDSQR, SLARTG, SLASR, SSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IUPLO = 0
 | |
|       IF( LSAME( UPLO, 'U' ) )
 | |
|      $   IUPLO = 1
 | |
|       IF( LSAME( UPLO, 'L' ) )
 | |
|      $   IUPLO = 2
 | |
|       IF( IUPLO.EQ.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NCVT.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( NRU.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( NCC.LT.0 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
 | |
|      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
 | |
|      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
 | |
|          INFO = -14
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SLASDQ', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     ROTATE is true if any singular vectors desired, false otherwise
 | |
| *
 | |
|       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
 | |
|       NP1 = N + 1
 | |
|       SQRE1 = SQRE
 | |
| *
 | |
| *     If matrix non-square upper bidiagonal, rotate to be lower
 | |
| *     bidiagonal.  The rotations are on the right.
 | |
| *
 | |
|       IF( ( IUPLO.EQ.1 ) .AND. ( SQRE1.EQ.1 ) ) THEN
 | |
|          DO 10 I = 1, N - 1
 | |
|             CALL SLARTG( D( I ), E( I ), CS, SN, R )
 | |
|             D( I ) = R
 | |
|             E( I ) = SN*D( I+1 )
 | |
|             D( I+1 ) = CS*D( I+1 )
 | |
|             IF( ROTATE ) THEN
 | |
|                WORK( I ) = CS
 | |
|                WORK( N+I ) = SN
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
|          CALL SLARTG( D( N ), E( N ), CS, SN, R )
 | |
|          D( N ) = R
 | |
|          E( N ) = ZERO
 | |
|          IF( ROTATE ) THEN
 | |
|             WORK( N ) = CS
 | |
|             WORK( N+N ) = SN
 | |
|          END IF
 | |
|          IUPLO = 2
 | |
|          SQRE1 = 0
 | |
| *
 | |
| *        Update singular vectors if desired.
 | |
| *
 | |
|          IF( NCVT.GT.0 )
 | |
|      $      CALL SLASR( 'L', 'V', 'F', NP1, NCVT, WORK( 1 ),
 | |
|      $                  WORK( NP1 ), VT, LDVT )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix lower bidiagonal, rotate to be upper bidiagonal
 | |
| *     by applying Givens rotations on the left.
 | |
| *
 | |
|       IF( IUPLO.EQ.2 ) THEN
 | |
|          DO 20 I = 1, N - 1
 | |
|             CALL SLARTG( D( I ), E( I ), CS, SN, R )
 | |
|             D( I ) = R
 | |
|             E( I ) = SN*D( I+1 )
 | |
|             D( I+1 ) = CS*D( I+1 )
 | |
|             IF( ROTATE ) THEN
 | |
|                WORK( I ) = CS
 | |
|                WORK( N+I ) = SN
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        If matrix (N+1)-by-N lower bidiagonal, one additional
 | |
| *        rotation is needed.
 | |
| *
 | |
|          IF( SQRE1.EQ.1 ) THEN
 | |
|             CALL SLARTG( D( N ), E( N ), CS, SN, R )
 | |
|             D( N ) = R
 | |
|             IF( ROTATE ) THEN
 | |
|                WORK( N ) = CS
 | |
|                WORK( N+N ) = SN
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Update singular vectors if desired.
 | |
| *
 | |
|          IF( NRU.GT.0 ) THEN
 | |
|             IF( SQRE1.EQ.0 ) THEN
 | |
|                CALL SLASR( 'R', 'V', 'F', NRU, N, WORK( 1 ),
 | |
|      $                     WORK( NP1 ), U, LDU )
 | |
|             ELSE
 | |
|                CALL SLASR( 'R', 'V', 'F', NRU, NP1, WORK( 1 ),
 | |
|      $                     WORK( NP1 ), U, LDU )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( NCC.GT.0 ) THEN
 | |
|             IF( SQRE1.EQ.0 ) THEN
 | |
|                CALL SLASR( 'L', 'V', 'F', N, NCC, WORK( 1 ),
 | |
|      $                     WORK( NP1 ), C, LDC )
 | |
|             ELSE
 | |
|                CALL SLASR( 'L', 'V', 'F', NP1, NCC, WORK( 1 ),
 | |
|      $                     WORK( NP1 ), C, LDC )
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Call SBDSQR to compute the SVD of the reduced real
 | |
| *     N-by-N upper bidiagonal matrix.
 | |
| *
 | |
|       CALL SBDSQR( 'U', N, NCVT, NRU, NCC, D, E, VT, LDVT, U, LDU, C,
 | |
|      $             LDC, WORK, INFO )
 | |
| *
 | |
| *     Sort the singular values into ascending order (insertion sort on
 | |
| *     singular values, but only one transposition per singular vector)
 | |
| *
 | |
|       DO 40 I = 1, N
 | |
| *
 | |
| *        Scan for smallest D(I).
 | |
| *
 | |
|          ISUB = I
 | |
|          SMIN = D( I )
 | |
|          DO 30 J = I + 1, N
 | |
|             IF( D( J ).LT.SMIN ) THEN
 | |
|                ISUB = J
 | |
|                SMIN = D( J )
 | |
|             END IF
 | |
|    30    CONTINUE
 | |
|          IF( ISUB.NE.I ) THEN
 | |
| *
 | |
| *           Swap singular values and vectors.
 | |
| *
 | |
|             D( ISUB ) = D( I )
 | |
|             D( I ) = SMIN
 | |
|             IF( NCVT.GT.0 )
 | |
|      $         CALL SSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( I, 1 ), LDVT )
 | |
|             IF( NRU.GT.0 )
 | |
|      $         CALL SSWAP( NRU, U( 1, ISUB ), 1, U( 1, I ), 1 )
 | |
|             IF( NCC.GT.0 )
 | |
|      $         CALL SSWAP( NCC, C( ISUB, 1 ), LDC, C( I, 1 ), LDC )
 | |
|          END IF
 | |
|    40 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLASDQ
 | |
| *
 | |
|       END
 |