418 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			418 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAMTSQR
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *      SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
 | |
| *     $                     LDT, C, LDC, WORK, LWORK, INFO )
 | |
| *
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
| *      CHARACTER         SIDE, TRANS
 | |
| *      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
| *      COMPLEX        A( LDA, * ), WORK( * ), C(LDC, * ),
 | |
| *     $                  T( LDT, * )
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>      CLAMTSQR overwrites the general complex M-by-N matrix C with
 | |
| *>
 | |
| *>
 | |
| *>                 SIDE = 'L'     SIDE = 'R'
 | |
| *> TRANS = 'N':      Q * C          C * Q
 | |
| *> TRANS = 'C':      Q**H * C       C * Q**H
 | |
| *>      where Q is a complex unitary matrix defined as the product
 | |
| *>      of blocked elementary reflectors computed by tall skinny
 | |
| *>      QR factorization (CLATSQR)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'L': apply Q or Q**H from the Left;
 | |
| *>          = 'R': apply Q or Q**H from the Right.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N':  No transpose, apply Q;
 | |
| *>          = 'C':  Conjugate Transpose, apply Q**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix C. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of elementary reflectors whose product defines
 | |
| *>          the matrix Q. M >= K >= 0;
 | |
| *>
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MB
 | |
| *> \verbatim
 | |
| *>          MB is INTEGER
 | |
| *>          The block size to be used in the blocked QR.
 | |
| *>          MB > N. (must be the same as CLATSQR)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The column block size to be used in the blocked QR.
 | |
| *>          N >= NB >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,K)
 | |
| *>          The i-th column must contain the vector which defines the
 | |
| *>          blockedelementary reflector H(i), for i = 1,2,...,k, as
 | |
| *>          returned by CLATSQR in the first k columns of
 | |
| *>          its array argument A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.
 | |
| *>          If SIDE = 'L', LDA >= max(1,M);
 | |
| *>          if SIDE = 'R', LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array, dimension
 | |
| *>          ( N * Number of blocks(CEIL(M-K/MB-K)),
 | |
| *>          The blocked upper triangular block reflectors stored in compact form
 | |
| *>          as a sequence of upper triangular blocks.  See below
 | |
| *>          for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= NB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX array, dimension (LDC,N)
 | |
| *>          On entry, the M-by-N matrix C.
 | |
| *>          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>         (workspace) COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>
 | |
| *> \endverbatim
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>
 | |
| *>          If SIDE = 'L', LWORK >= max(1,N)*NB;
 | |
| *>          if SIDE = 'R', LWORK >= max(1,MB)*NB.
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *> Tall-Skinny QR (TSQR) performs QR by a sequence of unitary transformations,
 | |
| *> representing Q as a product of other unitary matrices
 | |
| *>   Q = Q(1) * Q(2) * . . . * Q(k)
 | |
| *> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
 | |
| *>   Q(1) zeros out the subdiagonal entries of rows 1:MB of A
 | |
| *>   Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
 | |
| *>   Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
 | |
| *>   . . .
 | |
| *>
 | |
| *> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
 | |
| *> stored under the diagonal of rows 1:MB of A, and by upper triangular
 | |
| *> block reflectors, stored in array T(1:LDT,1:N).
 | |
| *> For more information see Further Details in GEQRT.
 | |
| *>
 | |
| *> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
 | |
| *> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
 | |
| *> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
 | |
| *> The last Q(k) may use fewer rows.
 | |
| *> For more information see Further Details in TPQRT.
 | |
| *>
 | |
| *> For more details of the overall algorithm, see the description of
 | |
| *> Sequential TSQR in Section 2.2 of [1].
 | |
| *>
 | |
| *> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
 | |
| *>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
 | |
| *>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
 | |
|      $        LDT, C, LDC, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER         SIDE, TRANS
 | |
|       INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX        A( LDA, * ), WORK( * ), C(LDC, * ),
 | |
|      $                T( LDT, * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
 | |
|       INTEGER    I, II, KK, LW, CTR, Q
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL   CGEMQRT, CTPMQRT, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       LQUERY  = LWORK.LT.0
 | |
|       NOTRAN  = LSAME( TRANS, 'N' )
 | |
|       TRAN    = LSAME( TRANS, 'C' )
 | |
|       LEFT    = LSAME( SIDE, 'L' )
 | |
|       RIGHT   = LSAME( SIDE, 'R' )
 | |
|       IF (LEFT) THEN
 | |
|         LW = N * NB
 | |
|         Q = M
 | |
|       ELSE
 | |
|         LW = M * NB
 | |
|         Q = N
 | |
|       END IF
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( M.LT.K ) THEN
 | |
|         INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|         INFO = -4
 | |
|       ELSE IF( K.LT.0 ) THEN
 | |
|         INFO = -5
 | |
|       ELSE IF( K.LT.NB .OR. NB.LT.1 ) THEN
 | |
|         INFO = -7
 | |
|       ELSE IF( LDA.LT.MAX( 1, Q ) ) THEN
 | |
|         INFO = -9
 | |
|       ELSE IF( LDT.LT.MAX( 1, NB) ) THEN
 | |
|         INFO = -11
 | |
|       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
 | |
|         INFO = -15
 | |
|       END IF
 | |
| *
 | |
| *     Determine the block size if it is tall skinny or short and wide
 | |
| *
 | |
|       IF( INFO.EQ.0)  THEN
 | |
|           WORK(1) = LW
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|         CALL XERBLA( 'CLAMTSQR', -INFO )
 | |
|         RETURN
 | |
|       ELSE IF (LQUERY) THEN
 | |
|        RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN(M,N,K).EQ.0 ) THEN
 | |
|         RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN
 | |
|         CALL CGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA,
 | |
|      $        T, LDT, C, LDC, WORK, INFO)
 | |
|         RETURN
 | |
|        END IF
 | |
| *
 | |
|       IF(LEFT.AND.NOTRAN) THEN
 | |
| *
 | |
| *         Multiply Q to the last block of C
 | |
| *
 | |
|          KK = MOD((M-K),(MB-K))
 | |
|          CTR = (M-K)/(MB-K)
 | |
|          IF (KK.GT.0) THEN
 | |
|            II=M-KK+1
 | |
|            CALL CTPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA,
 | |
|      $       T(1, CTR*K+1),LDT , C(1,1), LDC,
 | |
|      $       C(II,1), LDC, WORK, INFO )
 | |
|          ELSE
 | |
|            II=M+1
 | |
|          END IF
 | |
| *
 | |
|          DO I=II-(MB-K),MB+1,-(MB-K)
 | |
| *
 | |
| *         Multiply Q to the current block of C (I:I+MB,1:N)
 | |
| *
 | |
|            CTR = CTR - 1
 | |
|            CALL CTPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA,
 | |
|      $         T(1,CTR*K+1),LDT, C(1,1), LDC,
 | |
|      $         C(I,1), LDC, WORK, INFO )
 | |
| 
 | |
|          END DO
 | |
| *
 | |
| *         Multiply Q to the first block of C (1:MB,1:N)
 | |
| *
 | |
|          CALL CGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T
 | |
|      $            ,LDT ,C(1,1), LDC, WORK, INFO )
 | |
| *
 | |
|       ELSE IF (LEFT.AND.TRAN) THEN
 | |
| *
 | |
| *         Multiply Q to the first block of C
 | |
| *
 | |
|          KK = MOD((M-K),(MB-K))
 | |
|          II=M-KK+1
 | |
|          CTR = 1
 | |
|          CALL CGEMQRT('L','C',MB , N, K, NB, A(1,1), LDA, T
 | |
|      $            ,LDT ,C(1,1), LDC, WORK, INFO )
 | |
| *
 | |
|          DO I=MB+1,II-MB+K,(MB-K)
 | |
| *
 | |
| *         Multiply Q to the current block of C (I:I+MB,1:N)
 | |
| *
 | |
|           CALL CTPMQRT('L','C',MB-K , N, K, 0,NB, A(I,1), LDA,
 | |
|      $       T(1, CTR*K+1),LDT, C(1,1), LDC,
 | |
|      $       C(I,1), LDC, WORK, INFO )
 | |
|           CTR = CTR + 1
 | |
| *
 | |
|          END DO
 | |
|          IF(II.LE.M) THEN
 | |
| *
 | |
| *         Multiply Q to the last block of C
 | |
| *
 | |
|           CALL CTPMQRT('L','C',KK , N, K, 0,NB, A(II,1), LDA,
 | |
|      $      T(1,CTR*K+1), LDT, C(1,1), LDC,
 | |
|      $      C(II,1), LDC, WORK, INFO )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF(RIGHT.AND.TRAN) THEN
 | |
| *
 | |
| *         Multiply Q to the last block of C
 | |
| *
 | |
|           KK = MOD((N-K),(MB-K))
 | |
|           CTR = (N-K)/(MB-K)
 | |
|           IF (KK.GT.0) THEN
 | |
|             II=N-KK+1
 | |
|             CALL CTPMQRT('R','C',M , KK, K, 0, NB, A(II,1), LDA,
 | |
|      $        T(1, CTR*K+1), LDT, C(1,1), LDC,
 | |
|      $        C(1,II), LDC, WORK, INFO )
 | |
|           ELSE
 | |
|             II=N+1
 | |
|           END IF
 | |
| *
 | |
|           DO I=II-(MB-K),MB+1,-(MB-K)
 | |
| *
 | |
| *         Multiply Q to the current block of C (1:M,I:I+MB)
 | |
| *
 | |
|             CTR = CTR - 1
 | |
|             CALL CTPMQRT('R','C',M , MB-K, K, 0,NB, A(I,1), LDA,
 | |
|      $          T(1,CTR*K+1), LDT, C(1,1), LDC,
 | |
|      $          C(1,I), LDC, WORK, INFO )
 | |
|           END DO
 | |
| *
 | |
| *         Multiply Q to the first block of C (1:M,1:MB)
 | |
| *
 | |
|           CALL CGEMQRT('R','C',M , MB, K, NB, A(1,1), LDA, T
 | |
|      $              ,LDT ,C(1,1), LDC, WORK, INFO )
 | |
| *
 | |
|       ELSE IF (RIGHT.AND.NOTRAN) THEN
 | |
| *
 | |
| *         Multiply Q to the first block of C
 | |
| *
 | |
|          KK = MOD((N-K),(MB-K))
 | |
|          II=N-KK+1
 | |
|          CTR = 1
 | |
|          CALL CGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T
 | |
|      $              ,LDT ,C(1,1), LDC, WORK, INFO )
 | |
| *
 | |
|          DO I=MB+1,II-MB+K,(MB-K)
 | |
| *
 | |
| *         Multiply Q to the current block of C (1:M,I:I+MB)
 | |
| *
 | |
|           CALL CTPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA,
 | |
|      $         T(1,CTR*K+1),LDT, C(1,1), LDC,
 | |
|      $         C(1,I), LDC, WORK, INFO )
 | |
|           CTR = CTR + 1
 | |
| *
 | |
|          END DO
 | |
|          IF(II.LE.N) THEN
 | |
| *
 | |
| *         Multiply Q to the last block of C
 | |
| *
 | |
|           CALL CTPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA,
 | |
|      $        T(1,CTR*K+1),LDT, C(1,1), LDC,
 | |
|      $        C(1,II), LDC, WORK, INFO )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       WORK(1) = LW
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAMTSQR
 | |
| *
 | |
|       END
 |