2233 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			2233 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGEJSV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGEJSV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgejsv.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgejsv.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgejsv.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *     SUBROUTINE CGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
 | |
| *                         M, N, A, LDA, SVA, U, LDU, V, LDV,
 | |
| *                         CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
| *     IMPLICIT    NONE
 | |
| *     INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
| *     COMPLEX     A( LDA, * ),  U( LDU, * ), V( LDV, * ), CWORK( LWORK )
 | |
| *     REAL        SVA( N ), RWORK( LRWORK )
 | |
| *     INTEGER     IWORK( * )
 | |
| *     CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGEJSV computes the singular value decomposition (SVD) of a complex M-by-N
 | |
| *> matrix [A], where M >= N. The SVD of [A] is written as
 | |
| *>
 | |
| *>              [A] = [U] * [SIGMA] * [V]^*,
 | |
| *>
 | |
| *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
 | |
| *> diagonal elements, [U] is an M-by-N (or M-by-M) unitary matrix, and
 | |
| *> [V] is an N-by-N unitary matrix. The diagonal elements of [SIGMA] are
 | |
| *> the singular values of [A]. The columns of [U] and [V] are the left and
 | |
| *> the right singular vectors of [A], respectively. The matrices [U] and [V]
 | |
| *> are computed and stored in the arrays U and V, respectively. The diagonal
 | |
| *> of [SIGMA] is computed and stored in the array SVA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *>  Arguments:
 | |
| *>  ==========
 | |
| *>
 | |
| *> \param[in] JOBA
 | |
| *> \verbatim
 | |
| *>          JOBA is CHARACTER*1
 | |
| *>         Specifies the level of accuracy:
 | |
| *>       = 'C': This option works well (high relative accuracy) if A = B * D,
 | |
| *>              with well-conditioned B and arbitrary diagonal matrix D.
 | |
| *>              The accuracy cannot be spoiled by COLUMN scaling. The
 | |
| *>              accuracy of the computed output depends on the condition of
 | |
| *>              B, and the procedure aims at the best theoretical accuracy.
 | |
| *>              The relative error max_{i=1:N}|d sigma_i| / sigma_i is
 | |
| *>              bounded by f(M,N)*epsilon* cond(B), independent of D.
 | |
| *>              The input matrix is preprocessed with the QRF with column
 | |
| *>              pivoting. This initial preprocessing and preconditioning by
 | |
| *>              a rank revealing QR factorization is common for all values of
 | |
| *>              JOBA. Additional actions are specified as follows:
 | |
| *>       = 'E': Computation as with 'C' with an additional estimate of the
 | |
| *>              condition number of B. It provides a realistic error bound.
 | |
| *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
 | |
| *>              D1, D2, and well-conditioned matrix C, this option gives
 | |
| *>              higher accuracy than the 'C' option. If the structure of the
 | |
| *>              input matrix is not known, and relative accuracy is
 | |
| *>              desirable, then this option is advisable. The input matrix A
 | |
| *>              is preprocessed with QR factorization with FULL (row and
 | |
| *>              column) pivoting.
 | |
| *>       = 'G': Computation as with 'F' with an additional estimate of the
 | |
| *>              condition number of B, where A=B*D. If A has heavily weighted
 | |
| *>              rows, then using this condition number gives too pessimistic
 | |
| *>              error bound.
 | |
| *>       = 'A': Small singular values are not well determined by the data 
 | |
| *>              and are considered as noisy; the matrix is treated as
 | |
| *>              numerically rank deficient. The error in the computed
 | |
| *>              singular values is bounded by f(m,n)*epsilon*||A||.
 | |
| *>              The computed SVD A = U * S * V^* restores A up to
 | |
| *>              f(m,n)*epsilon*||A||.
 | |
| *>              This gives the procedure the licence to discard (set to zero)
 | |
| *>              all singular values below N*epsilon*||A||.
 | |
| *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
 | |
| *>              QR factorization is used do reveal (using triangular factor)
 | |
| *>              a gap sigma_{r+1} < epsilon * sigma_r in which case the
 | |
| *>              numerical RANK is declared to be r. The SVD is computed with
 | |
| *>              absolute error bounds, but more accurately than with 'A'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBU
 | |
| *> \verbatim
 | |
| *>          JOBU is CHARACTER*1
 | |
| *>         Specifies whether to compute the columns of U:
 | |
| *>       = 'U': N columns of U are returned in the array U.
 | |
| *>       = 'F': full set of M left sing. vectors is returned in the array U.
 | |
| *>       = 'W': U may be used as workspace of length M*N. See the description
 | |
| *>              of U.
 | |
| *>       = 'N': U is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV
 | |
| *> \verbatim
 | |
| *>          JOBV is CHARACTER*1
 | |
| *>         Specifies whether to compute the matrix V:
 | |
| *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
 | |
| *>              are not explicitly accumulated.
 | |
| *>       = 'J': N columns of V are returned in the array V, but they are
 | |
| *>              computed as the product of Jacobi rotations, if JOBT = 'N'.
 | |
| *>       = 'W': V may be used as workspace of length N*N. See the description
 | |
| *>              of V.
 | |
| *>       = 'N': V is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBR
 | |
| *> \verbatim
 | |
| *>          JOBR is CHARACTER*1
 | |
| *>         Specifies the RANGE for the singular values. Issues the licence to
 | |
| *>         set to zero small positive singular values if they are outside
 | |
| *>         specified range. If A .NE. 0 is scaled so that the largest singular
 | |
| *>         value of c*A is around SQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
 | |
| *>         the licence to kill columns of A whose norm in c*A is less than
 | |
| *>         SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
 | |
| *>         where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
 | |
| *>       = 'N': Do not kill small columns of c*A. This option assumes that
 | |
| *>              BLAS and QR factorizations and triangular solvers are
 | |
| *>              implemented to work in that range. If the condition of A
 | |
| *>              is greater than BIG, use CGESVJ.
 | |
| *>       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]
 | |
| *>              (roughly, as described above). This option is recommended.
 | |
| *>                                             ===========================
 | |
| *>         For computing the singular values in the FULL range [SFMIN,BIG]
 | |
| *>         use CGESVJ.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBT
 | |
| *> \verbatim
 | |
| *>          JOBT is CHARACTER*1
 | |
| *>         If the matrix is square then the procedure may determine to use
 | |
| *>         transposed A if A^* seems to be better with respect to convergence.
 | |
| *>         If the matrix is not square, JOBT is ignored.
 | |
| *>         The decision is based on two values of entropy over the adjoint
 | |
| *>         orbit of A^* * A. See the descriptions of WORK(6) and WORK(7).
 | |
| *>       = 'T': transpose if entropy test indicates possibly faster
 | |
| *>         convergence of Jacobi process if A^* is taken as input. If A is
 | |
| *>         replaced with A^*, then the row pivoting is included automatically.
 | |
| *>       = 'N': do not speculate.
 | |
| *>         The option 'T' can be used to compute only the singular values, or
 | |
| *>         the full SVD (U, SIGMA and V). For only one set of singular vectors
 | |
| *>         (U or V), the caller should provide both U and V, as one of the
 | |
| *>         matrices is used as workspace if the matrix A is transposed.
 | |
| *>         The implementer can easily remove this constraint and make the
 | |
| *>         code more complicated. See the descriptions of U and V.
 | |
| *>         In general, this option is considered experimental, and 'N'; should
 | |
| *>         be preferred. This is subject to changes in the future.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBP
 | |
| *> \verbatim
 | |
| *>          JOBP is CHARACTER*1
 | |
| *>         Issues the licence to introduce structured perturbations to drown
 | |
| *>         denormalized numbers. This licence should be active if the
 | |
| *>         denormals are poorly implemented, causing slow computation,
 | |
| *>         especially in cases of fast convergence (!). For details see [1,2].
 | |
| *>         For the sake of simplicity, this perturbations are included only
 | |
| *>         when the full SVD or only the singular values are requested. The
 | |
| *>         implementer/user can easily add the perturbation for the cases of
 | |
| *>         computing one set of singular vectors.
 | |
| *>       = 'P': introduce perturbation
 | |
| *>       = 'N': do not perturb
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>         The number of rows of the input matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The number of columns of the input matrix A. M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SVA
 | |
| *> \verbatim
 | |
| *>          SVA is REAL array, dimension (N)
 | |
| *>          On exit,
 | |
| *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
 | |
| *>            computation SVA contains Euclidean column norms of the
 | |
| *>            iterated matrices in the array A.
 | |
| *>          - For WORK(1) .NE. WORK(2): The singular values of A are
 | |
| *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
 | |
| *>            sigma_max(A) overflows or if small singular values have been
 | |
| *>            saved from underflow by scaling the input matrix A.
 | |
| *>          - If JOBR='R' then some of the singular values may be returned
 | |
| *>            as exact zeros obtained by "set to zero" because they are
 | |
| *>            below the numerical rank threshold or are denormalized numbers.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX array, dimension ( LDU, N ) or ( LDU, M )
 | |
| *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
 | |
| *>                         the left singular vectors.
 | |
| *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
 | |
| *>                         the left singular vectors, including an ONB
 | |
| *>                         of the orthogonal complement of the Range(A).
 | |
| *>          If JOBU = 'W'  .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
 | |
| *>                         then U is used as workspace if the procedure
 | |
| *>                         replaces A with A^*. In that case, [V] is computed
 | |
| *>                         in U as left singular vectors of A^* and then
 | |
| *>                         copied back to the V array. This 'W' option is just
 | |
| *>                         a reminder to the caller that in this case U is
 | |
| *>                         reserved as workspace of length N*N.
 | |
| *>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U,  LDU >= 1.
 | |
| *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX array, dimension ( LDV, N )
 | |
| *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
 | |
| *>                         the right singular vectors;
 | |
| *>          If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
 | |
| *>                         then V is used as workspace if the pprocedure
 | |
| *>                         replaces A with A^*. In that case, [U] is computed
 | |
| *>                         in V as right singular vectors of A^* and then
 | |
| *>                         copied back to the U array. This 'W' option is just
 | |
| *>                         a reminder to the caller that in this case V is
 | |
| *>                         reserved as workspace of length N*N.
 | |
| *>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V,  LDV >= 1.
 | |
| *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CWORK
 | |
| *> \verbatim
 | |
| *>          CWORK is COMPLEX array, dimension (MAX(2,LWORK))
 | |
| *>          If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or
 | |
| *>          LRWORK=-1), then on exit CWORK(1) contains the required length of 
 | |
| *>          CWORK for the job parameters used in the call.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          Length of CWORK to confirm proper allocation of workspace.
 | |
| *>          LWORK depends on the job:
 | |
| *>
 | |
| *>          1. If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and
 | |
| *>            1.1 .. no scaled condition estimate required (JOBA.NE.'E'.AND.JOBA.NE.'G'):
 | |
| *>               LWORK >= 2*N+1. This is the minimal requirement.
 | |
| *>               ->> For optimal performance (blocked code) the optimal value
 | |
| *>               is LWORK >= N + (N+1)*NB. Here NB is the optimal
 | |
| *>               block size for CGEQP3 and CGEQRF.
 | |
| *>               In general, optimal LWORK is computed as
 | |
| *>               LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ)).        
 | |
| *>            1.2. .. an estimate of the scaled condition number of A is
 | |
| *>               required (JOBA='E', or 'G'). In this case, LWORK the minimal
 | |
| *>               requirement is LWORK >= N*N + 2*N.
 | |
| *>               ->> For optimal performance (blocked code) the optimal value
 | |
| *>               is LWORK >= max(N+(N+1)*NB, N*N+2*N)=N**2+2*N.
 | |
| *>               In general, the optimal length LWORK is computed as
 | |
| *>               LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CGEQRF), LWORK(CGESVJ),
 | |
| *>                            N*N+LWORK(CPOCON)).
 | |
| *>          2. If SIGMA and the right singular vectors are needed (JOBV = 'V'),
 | |
| *>             (JOBU = 'N')
 | |
| *>            2.1   .. no scaled condition estimate requested (JOBE = 'N'):    
 | |
| *>            -> the minimal requirement is LWORK >= 3*N.
 | |
| *>            -> For optimal performance, 
 | |
| *>               LWORK >= max(N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
 | |
| *>               where NB is the optimal block size for CGEQP3, CGEQRF, CGELQF,
 | |
| *>               CUNMLQ. In general, the optimal length LWORK is computed as
 | |
| *>               LWORK >= max(N+LWORK(CGEQP3), N+LWORK(CGESVJ),
 | |
| *>                       N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)).
 | |
| *>            2.2 .. an estimate of the scaled condition number of A is
 | |
| *>               required (JOBA='E', or 'G').
 | |
| *>            -> the minimal requirement is LWORK >= 3*N.      
 | |
| *>            -> For optimal performance, 
 | |
| *>               LWORK >= max(N+(N+1)*NB, 2*N,2*N+N*NB)=2*N+N*NB,
 | |
| *>               where NB is the optimal block size for CGEQP3, CGEQRF, CGELQF,
 | |
| *>               CUNMLQ. In general, the optimal length LWORK is computed as
 | |
| *>               LWORK >= max(N+LWORK(CGEQP3), LWORK(CPOCON), N+LWORK(CGESVJ),
 | |
| *>                       N+LWORK(CGELQF), 2*N+LWORK(CGEQRF), N+LWORK(CUNMLQ)).   
 | |
| *>          3. If SIGMA and the left singular vectors are needed
 | |
| *>            3.1  .. no scaled condition estimate requested (JOBE = 'N'):
 | |
| *>            -> the minimal requirement is LWORK >= 3*N.
 | |
| *>            -> For optimal performance:
 | |
| *>               if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
 | |
| *>               where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR.
 | |
| *>               In general, the optimal length LWORK is computed as
 | |
| *>               LWORK >= max(N+LWORK(CGEQP3), 2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)). 
 | |
| *>            3.2  .. an estimate of the scaled condition number of A is
 | |
| *>               required (JOBA='E', or 'G').
 | |
| *>            -> the minimal requirement is LWORK >= 3*N.
 | |
| *>            -> For optimal performance:
 | |
| *>               if JOBU = 'U' :: LWORK >= max(3*N, N+(N+1)*NB, 2*N+N*NB)=2*N+N*NB,
 | |
| *>               where NB is the optimal block size for CGEQP3, CGEQRF, CUNMQR.
 | |
| *>               In general, the optimal length LWORK is computed as
 | |
| *>               LWORK >= max(N+LWORK(CGEQP3),N+LWORK(CPOCON),
 | |
| *>                        2*N+LWORK(CGEQRF), N+LWORK(CUNMQR)).
 | |
| *>
 | |
| *>          4. If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and
 | |
| *>            4.1. if JOBV = 'V'
 | |
| *>               the minimal requirement is LWORK >= 5*N+2*N*N.
 | |
| *>            4.2. if JOBV = 'J' the minimal requirement is
 | |
| *>               LWORK >= 4*N+N*N.
 | |
| *>            In both cases, the allocated CWORK can accommodate blocked runs
 | |
| *>            of CGEQP3, CGEQRF, CGELQF, CUNMQR, CUNMLQ.
 | |
| *> 
 | |
| *>          If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or
 | |
| *>          LRWORK=-1), then on exit CWORK(1) contains the optimal and CWORK(2) contains the
 | |
| *>          minimal length of CWORK for the job parameters used in the call.        
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (MAX(7,LRWORK))
 | |
| *>          On exit,
 | |
| *>          RWORK(1) = Determines the scaling factor SCALE = RWORK(2) / RWORK(1)
 | |
| *>                    such that SCALE*SVA(1:N) are the computed singular values
 | |
| *>                    of A. (See the description of SVA().)
 | |
| *>          RWORK(2) = See the description of RWORK(1).
 | |
| *>          RWORK(3) = SCONDA is an estimate for the condition number of
 | |
| *>                    column equilibrated A. (If JOBA = 'E' or 'G')
 | |
| *>                    SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
 | |
| *>                    It is computed using CPOCON. It holds
 | |
| *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
 | |
| *>                    where R is the triangular factor from the QRF of A.
 | |
| *>                    However, if R is truncated and the numerical rank is
 | |
| *>                    determined to be strictly smaller than N, SCONDA is
 | |
| *>                    returned as -1, thus indicating that the smallest
 | |
| *>                    singular values might be lost.
 | |
| *>
 | |
| *>          If full SVD is needed, the following two condition numbers are
 | |
| *>          useful for the analysis of the algorithm. They are provided for
 | |
| *>          a developer/implementer who is familiar with the details of
 | |
| *>          the method.
 | |
| *>
 | |
| *>          RWORK(4) = an estimate of the scaled condition number of the
 | |
| *>                    triangular factor in the first QR factorization.
 | |
| *>          RWORK(5) = an estimate of the scaled condition number of the
 | |
| *>                    triangular factor in the second QR factorization.
 | |
| *>          The following two parameters are computed if JOBT = 'T'.
 | |
| *>          They are provided for a developer/implementer who is familiar
 | |
| *>          with the details of the method.
 | |
| *>          RWORK(6) = the entropy of A^* * A :: this is the Shannon entropy
 | |
| *>                    of diag(A^* * A) / Trace(A^* * A) taken as point in the
 | |
| *>                    probability simplex.
 | |
| *>          RWORK(7) = the entropy of A * A^*. (See the description of RWORK(6).)
 | |
| *>          If the call to CGEJSV is a workspace query (indicated by LWORK=-1 or
 | |
| *>          LRWORK=-1), then on exit RWORK(1) contains the required length of
 | |
| *>          RWORK for the job parameters used in the call.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LRWORK
 | |
| *> \verbatim
 | |
| *>          LRWORK is INTEGER
 | |
| *>          Length of RWORK to confirm proper allocation of workspace.
 | |
| *>          LRWORK depends on the job:
 | |
| *>
 | |
| *>       1. If only the singular values are requested i.e. if
 | |
| *>          LSAME(JOBU,'N') .AND. LSAME(JOBV,'N')
 | |
| *>          then:
 | |
| *>          1.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
 | |
| *>               then: LRWORK = max( 7, 2 * M ).
 | |
| *>          1.2. Otherwise, LRWORK  = max( 7,  N ).
 | |
| *>       2. If singular values with the right singular vectors are requested
 | |
| *>          i.e. if
 | |
| *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J')) .AND.
 | |
| *>          .NOT.(LSAME(JOBU,'U').OR.LSAME(JOBU,'F'))
 | |
| *>          then:
 | |
| *>          2.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
 | |
| *>          then LRWORK = max( 7, 2 * M ).
 | |
| *>          2.2. Otherwise, LRWORK  = max( 7,  N ).
 | |
| *>       3. If singular values with the left singular vectors are requested, i.e. if
 | |
| *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
 | |
| *>          .NOT.(LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
 | |
| *>          then:
 | |
| *>          3.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
 | |
| *>          then LRWORK = max( 7, 2 * M ).
 | |
| *>          3.2. Otherwise, LRWORK  = max( 7,  N ).
 | |
| *>       4. If singular values with both the left and the right singular vectors
 | |
| *>          are requested, i.e. if
 | |
| *>          (LSAME(JOBU,'U').OR.LSAME(JOBU,'F')) .AND.
 | |
| *>          (LSAME(JOBV,'V').OR.LSAME(JOBV,'J'))
 | |
| *>          then:
 | |
| *>          4.1. If LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G'),
 | |
| *>          then LRWORK = max( 7, 2 * M ).
 | |
| *>          4.2. Otherwise, LRWORK  = max( 7, N ).
 | |
| *> 
 | |
| *>          If, on entry, LRWORK = -1 or LWORK=-1, a workspace query is assumed and 
 | |
| *>          the length of RWORK is returned in RWORK(1). 
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, of dimension at least 4, that further depends
 | |
| *>          on the job:
 | |
| *> 
 | |
| *>          1. If only the singular values are requested then:
 | |
| *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
 | |
| *>             then the length of IWORK is N+M; otherwise the length of IWORK is N.
 | |
| *>          2. If the singular values and the right singular vectors are requested then:
 | |
| *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
 | |
| *>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
 | |
| *>          3. If the singular values and the left singular vectors are requested then:
 | |
| *>             If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
 | |
| *>             then the length of IWORK is N+M; otherwise the length of IWORK is N. 
 | |
| *>          4. If the singular values with both the left and the right singular vectors
 | |
| *>             are requested, then:      
 | |
| *>             4.1. If LSAME(JOBV,'J') the length of IWORK is determined as follows:
 | |
| *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
 | |
| *>                  then the length of IWORK is N+M; otherwise the length of IWORK is N. 
 | |
| *>             4.2. If LSAME(JOBV,'V') the length of IWORK is determined as follows:
 | |
| *>                  If ( LSAME(JOBT,'T') .OR. LSAME(JOBA,'F') .OR. LSAME(JOBA,'G') ) 
 | |
| *>                  then the length of IWORK is 2*N+M; otherwise the length of IWORK is 2*N.
 | |
| *>        
 | |
| *>          On exit,
 | |
| *>          IWORK(1) = the numerical rank determined after the initial
 | |
| *>                     QR factorization with pivoting. See the descriptions
 | |
| *>                     of JOBA and JOBR.
 | |
| *>          IWORK(2) = the number of the computed nonzero singular values
 | |
| *>          IWORK(3) = if nonzero, a warning message:
 | |
| *>                     If IWORK(3) = 1 then some of the column norms of A
 | |
| *>                     were denormalized floats. The requested high accuracy
 | |
| *>                     is not warranted by the data.
 | |
| *>          IWORK(4) = 1 or -1. If IWORK(4) = 1, then the procedure used A^* to
 | |
| *>                     do the job as specified by the JOB parameters.
 | |
| *>          If the call to CGEJSV is a workspace query (indicated by LWORK = -1 and 
 | |
| *>          LRWORK = -1), then on exit IWORK(1) contains the required length of 
 | |
| *>          IWORK for the job parameters used in the call.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>           < 0:  if INFO = -i, then the i-th argument had an illegal value.
 | |
| *>           = 0:  successful exit;
 | |
| *>           > 0:  CGEJSV  did not converge in the maximal allowed number
 | |
| *>                 of sweeps. The computed values may be inaccurate.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complexGEsing
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  CGEJSV implements a preconditioned Jacobi SVD algorithm. It uses CGEQP3,
 | |
| *>  CGEQRF, and CGELQF as preprocessors and preconditioners. Optionally, an
 | |
| *>  additional row pivoting can be used as a preprocessor, which in some
 | |
| *>  cases results in much higher accuracy. An example is matrix A with the
 | |
| *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
 | |
| *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
 | |
| *>  pivoting in the first QR factorizations provides accuracy dependent on the
 | |
| *>  condition number of C, and independent of D1, D2. Such higher accuracy is
 | |
| *>  not completely understood theoretically, but it works well in practice.
 | |
| *>  Further, if A can be written as A = B*D, with well-conditioned B and some
 | |
| *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
 | |
| *>  in software, independent of D. For more details see [1], [2].
 | |
| *>     The computational range for the singular values can be the full range
 | |
| *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
 | |
| *>  & LAPACK routines called by CGEJSV are implemented to work in that range.
 | |
| *>  If that is not the case, then the restriction for safe computation with
 | |
| *>  the singular values in the range of normalized IEEE numbers is that the
 | |
| *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
 | |
| *>  overflow. This code (CGEJSV) is best used in this restricted range,
 | |
| *>  meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are
 | |
| *>  returned as zeros. See JOBR for details on this.
 | |
| *>     Further, this implementation is somewhat slower than the one described
 | |
| *>  in [1,2] due to replacement of some non-LAPACK components, and because
 | |
| *>  the choice of some tuning parameters in the iterative part (CGESVJ) is
 | |
| *>  left to the implementer on a particular machine.
 | |
| *>     The rank revealing QR factorization (in this code: CGEQP3) should be
 | |
| *>  implemented as in [3]. We have a new version of CGEQP3 under development
 | |
| *>  that is more robust than the current one in LAPACK, with a cleaner cut in
 | |
| *>  rank deficient cases. It will be available in the SIGMA library [4].
 | |
| *>  If M is much larger than N, it is obvious that the initial QRF with
 | |
| *>  column pivoting can be preprocessed by the QRF without pivoting. That
 | |
| *>  well known trick is not used in CGEJSV because in some cases heavy row
 | |
| *>  weighting can be treated with complete pivoting. The overhead in cases
 | |
| *>  M much larger than N is then only due to pivoting, but the benefits in
 | |
| *>  terms of accuracy have prevailed. The implementer/user can incorporate
 | |
| *>  this extra QRF step easily. The implementer can also improve data movement
 | |
| *>  (matrix transpose, matrix copy, matrix transposed copy) - this
 | |
| *>  implementation of CGEJSV uses only the simplest, naive data movement.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributor:
 | |
| *  ==================
 | |
| *>
 | |
| *>  Zlatko Drmac (Zagreb, Croatia)
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
 | |
| *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
 | |
| *>     LAPACK Working note 169.
 | |
| *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
 | |
| *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
 | |
| *>     LAPACK Working note 170.
 | |
| *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
 | |
| *>     factorization software - a case study.
 | |
| *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
 | |
| *>     LAPACK Working note 176.
 | |
| *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
 | |
| *>     QSVD, (H,K)-SVD computations.
 | |
| *>     Department of Mathematics, University of Zagreb, 2008, 2016.
 | |
| *> \endverbatim
 | |
| *
 | |
| *>  \par Bugs, examples and comments:
 | |
| *   =================================
 | |
| *>
 | |
| *>  Please report all bugs and send interesting examples and/or comments to
 | |
| *>  drmac@math.hr. Thank you.
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
 | |
|      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
 | |
|      $                   CWORK, LWORK, RWORK, LRWORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       IMPLICIT    NONE
 | |
|       INTEGER     INFO, LDA, LDU, LDV, LWORK, LRWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX     A( LDA, * ), U( LDU, * ), V( LDV, * ), CWORK( LWORK )
 | |
|       REAL        SVA( N ), RWORK( LRWORK )
 | |
|       INTEGER     IWORK( * )
 | |
|       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
 | |
| *     ..
 | |
| *
 | |
| *  ===========================================================================
 | |
| *
 | |
| *     .. Local Parameters ..
 | |
|       REAL        ZERO,         ONE
 | |
|       PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
|       COMPLEX     CZERO,                    CONE
 | |
|       PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), CONE = ( 1.0E0, 0.0E0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       COMPLEX CTEMP
 | |
|       REAL    AAPP,   AAQQ,   AATMAX, AATMIN, BIG,    BIG1,   COND_OK,
 | |
|      $        CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,  MAXPRJ, SCALEM,
 | |
|      $        SCONDA, SFMIN,  SMALL,  TEMP1,  USCAL1, USCAL2, XSC
 | |
|       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
 | |
|       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL,  JRACC,  KILL,   LQUERY,
 | |
|      $        LSVEC,  L2ABER, L2KILL, L2PERT,  L2RANK, L2TRAN, NOSCAL,
 | |
|      $        ROWPIV, RSVEC,  TRANSP
 | |
| *
 | |
|       INTEGER OPTWRK, MINWRK, MINRWRK, MINIWRK
 | |
|       INTEGER LWCON,  LWLQF, LWQP3, LWQRF, LWUNMLQ, LWUNMQR, LWUNMQRM,
 | |
|      $        LWSVDJ, LWSVDJV, LRWQP3, LRWCON, LRWSVDJ, IWOFF
 | |
|       INTEGER LWRK_CGELQF, LWRK_CGEQP3,  LWRK_CGEQP3N, LWRK_CGEQRF,  
 | |
|      $        LWRK_CGESVJ, LWRK_CGESVJV, LWRK_CGESVJU, LWRK_CUNMLQ, 
 | |
|      $        LWRK_CUNMQR, LWRK_CUNMQRM    
 | |
| *     ..
 | |
| *     .. Local Arrays
 | |
|       COMPLEX CDUMMY(1)
 | |
|       REAL    RDUMMY(1)
 | |
| *
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC ABS, CMPLX, CONJG, ALOG, MAX, MIN, REAL, NINT, SQRT
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL      SLAMCH, SCNRM2
 | |
|       INTEGER   ISAMAX, ICAMAX
 | |
|       LOGICAL   LSAME
 | |
|       EXTERNAL  ISAMAX, ICAMAX, LSAME, SLAMCH, SCNRM2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL  SLASSQ, CCOPY,  CGELQF, CGEQP3, CGEQRF, CLACPY, CLAPMR,
 | |
|      $          CLASCL, SLASCL, CLASET, CLASSQ, CLASWP, CUNGQR, CUNMLQ,
 | |
|      $          CUNMQR, CPOCON, SSCAL,  CSSCAL, CSWAP,  CTRSM,  CLACGV,
 | |
|      $          XERBLA
 | |
| *
 | |
|       EXTERNAL  CGESVJ
 | |
| *     ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
 | |
|       JRACC  = LSAME( JOBV, 'J' )
 | |
|       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
 | |
|       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
 | |
|       L2RANK = LSAME( JOBA, 'R' )
 | |
|       L2ABER = LSAME( JOBA, 'A' )
 | |
|       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
 | |
|       L2TRAN = LSAME( JOBT, 'T' ) .AND. ( M .EQ. N )
 | |
|       L2KILL = LSAME( JOBR, 'R' )
 | |
|       DEFR   = LSAME( JOBR, 'N' )
 | |
|       L2PERT = LSAME( JOBP, 'P' )
 | |
| *
 | |
|       LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 )
 | |
| *
 | |
|       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
 | |
|      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
 | |
|          INFO = - 1
 | |
|       ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.
 | |
|      $   ( LSAME( JOBU, 'W' ) .AND. RSVEC .AND. L2TRAN ) ) ) THEN
 | |
|          INFO = - 2
 | |
|       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
 | |
|      $   ( LSAME( JOBV, 'W' ) .AND. LSVEC .AND. L2TRAN ) ) ) THEN
 | |
|          INFO = - 3
 | |
|       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
 | |
|          INFO = - 4
 | |
|       ELSE IF ( .NOT. ( LSAME(JOBT,'T') .OR. LSAME(JOBT,'N') ) ) THEN
 | |
|          INFO = - 5
 | |
|       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
 | |
|          INFO = - 6
 | |
|       ELSE IF ( M .LT. 0 ) THEN
 | |
|          INFO = - 7
 | |
|       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
 | |
|          INFO = - 8
 | |
|       ELSE IF ( LDA .LT. M ) THEN
 | |
|          INFO = - 10
 | |
|       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
 | |
|          INFO = - 13
 | |
|       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
 | |
|          INFO = - 15
 | |
|       ELSE
 | |
| *        #:)
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
|       IF ( INFO .EQ. 0 ) THEN 
 | |
| *         .. compute the minimal and the optimal workspace lengths 
 | |
| *         [[The expressions for computing the minimal and the optimal
 | |
| *         values of LCWORK, LRWORK are written with a lot of redundancy and
 | |
| *         can be simplified. However, this verbose form is useful for
 | |
| *         maintenance and modifications of the code.]]
 | |
| *
 | |
| *        .. minimal workspace length for CGEQP3 of an M x N matrix,
 | |
| *         CGEQRF of an N x N matrix, CGELQF of an N x N matrix,
 | |
| *         CUNMLQ for computing N x N matrix, CUNMQR for computing N x N
 | |
| *         matrix, CUNMQR for computing M x N matrix, respectively.
 | |
|           LWQP3 = N+1   
 | |
|           LWQRF = MAX( 1, N )
 | |
|           LWLQF = MAX( 1, N )
 | |
|           LWUNMLQ  = MAX( 1, N )
 | |
|           LWUNMQR  = MAX( 1, N )
 | |
|           LWUNMQRM = MAX( 1, M )
 | |
| *        .. minimal workspace length for CPOCON of an N x N matrix
 | |
|           LWCON = 2 * N 
 | |
| *        .. minimal workspace length for CGESVJ of an N x N matrix,
 | |
| *         without and with explicit accumulation of Jacobi rotations
 | |
|           LWSVDJ  = MAX( 2 * N, 1 )         
 | |
|           LWSVDJV = MAX( 2 * N, 1 )
 | |
| *         .. minimal REAL workspace length for CGEQP3, CPOCON, CGESVJ
 | |
|           LRWQP3  = 2 * N 
 | |
|           LRWCON  = N 
 | |
|           LRWSVDJ = N 
 | |
|           IF ( LQUERY ) THEN 
 | |
|               CALL CGEQP3( M, N, A, LDA, IWORK, CDUMMY, CDUMMY, -1, 
 | |
|      $             RDUMMY, IERR )
 | |
|               LWRK_CGEQP3 = INT( CDUMMY(1) )
 | |
|               CALL CGEQRF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
 | |
|               LWRK_CGEQRF = INT( CDUMMY(1) )
 | |
|               CALL CGELQF( N, N, A, LDA, CDUMMY, CDUMMY,-1, IERR )
 | |
|               LWRK_CGELQF = INT( CDUMMY(1) )
 | |
|           END IF
 | |
|           MINWRK  = 2
 | |
|           OPTWRK  = 2
 | |
|           MINIWRK = N 
 | |
|           IF ( .NOT. (LSVEC .OR. RSVEC ) ) THEN
 | |
| *             .. minimal and optimal sizes of the complex workspace if
 | |
| *             only the singular values are requested
 | |
|               IF ( ERREST ) THEN 
 | |
|                   MINWRK = MAX( N+LWQP3, N**2+LWCON, N+LWQRF, LWSVDJ )
 | |
|               ELSE
 | |
|                   MINWRK = MAX( N+LWQP3, N+LWQRF, LWSVDJ )
 | |
|               END IF
 | |
|               IF ( LQUERY ) THEN 
 | |
|                   CALL CGESVJ( 'L', 'N', 'N', N, N, A, LDA, SVA, N, V, 
 | |
|      $                 LDV, CDUMMY, -1, RDUMMY, -1, IERR )
 | |
|                   LWRK_CGESVJ = INT( CDUMMY(1) )
 | |
|                   IF ( ERREST ) THEN 
 | |
|                       OPTWRK = MAX( N+LWRK_CGEQP3, N**2+LWCON, 
 | |
|      $                              N+LWRK_CGEQRF, LWRK_CGESVJ )
 | |
|                   ELSE
 | |
|                       OPTWRK = MAX( N+LWRK_CGEQP3, N+LWRK_CGEQRF, 
 | |
|      $                              LWRK_CGESVJ )
 | |
|                   END IF
 | |
|               END IF
 | |
|               IF ( L2TRAN .OR. ROWPIV ) THEN 
 | |
|                   IF ( ERREST ) THEN 
 | |
|                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWCON, LRWSVDJ )
 | |
|                   ELSE
 | |
|                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
 | |
|                   END IF                 
 | |
|               ELSE
 | |
|                   IF ( ERREST ) THEN 
 | |
|                      MINRWRK = MAX( 7, LRWQP3, LRWCON, LRWSVDJ )
 | |
|                   ELSE
 | |
|                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
 | |
|                   END IF
 | |
|               END IF   
 | |
|               IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M 
 | |
|           ELSE IF ( RSVEC .AND. (.NOT.LSVEC) ) THEN
 | |
| *            .. minimal and optimal sizes of the complex workspace if the
 | |
| *            singular values and the right singular vectors are requested
 | |
|              IF ( ERREST ) THEN 
 | |
|                  MINWRK = MAX( N+LWQP3, LWCON, LWSVDJ, N+LWLQF,  
 | |
|      $                         2*N+LWQRF, N+LWSVDJ, N+LWUNMLQ )
 | |
|              ELSE
 | |
|                  MINWRK = MAX( N+LWQP3, LWSVDJ, N+LWLQF, 2*N+LWQRF, 
 | |
|      $                         N+LWSVDJ, N+LWUNMLQ )
 | |
|              END IF
 | |
|              IF ( LQUERY ) THEN
 | |
|                  CALL CGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
 | |
|      $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
 | |
|                  LWRK_CGESVJ = INT( CDUMMY(1) )
 | |
|                  CALL CUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
 | |
|      $                V, LDV, CDUMMY, -1, IERR )
 | |
|                  LWRK_CUNMLQ = INT( CDUMMY(1) )
 | |
|                  IF ( ERREST ) THEN 
 | |
|                  OPTWRK = MAX( N+LWRK_CGEQP3, LWCON, LWRK_CGESVJ, 
 | |
|      $                         N+LWRK_CGELQF, 2*N+LWRK_CGEQRF,
 | |
|      $                         N+LWRK_CGESVJ,  N+LWRK_CUNMLQ )
 | |
|                  ELSE
 | |
|                  OPTWRK = MAX( N+LWRK_CGEQP3, LWRK_CGESVJ,N+LWRK_CGELQF,
 | |
|      $                         2*N+LWRK_CGEQRF, N+LWRK_CGESVJ, 
 | |
|      $                         N+LWRK_CUNMLQ )
 | |
|                  END IF
 | |
|              END IF
 | |
|              IF ( L2TRAN .OR. ROWPIV ) THEN 
 | |
|                   IF ( ERREST ) THEN 
 | |
|                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
 | |
|                   ELSE
 | |
|                      MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ ) 
 | |
|                   END IF                  
 | |
|              ELSE
 | |
|                   IF ( ERREST ) THEN 
 | |
|                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
 | |
|                   ELSE
 | |
|                      MINRWRK = MAX( 7, LRWQP3, LRWSVDJ ) 
 | |
|                   END IF                 
 | |
|              END IF
 | |
|              IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
 | |
|           ELSE IF ( LSVEC .AND. (.NOT.RSVEC) ) THEN  
 | |
| *            .. minimal and optimal sizes of the complex workspace if the
 | |
| *            singular values and the left singular vectors are requested
 | |
|              IF ( ERREST ) THEN
 | |
|                  MINWRK = N + MAX( LWQP3,LWCON,N+LWQRF,LWSVDJ,LWUNMQRM )
 | |
|              ELSE
 | |
|                  MINWRK = N + MAX( LWQP3, N+LWQRF, LWSVDJ, LWUNMQRM )
 | |
|              END IF
 | |
|              IF ( LQUERY ) THEN
 | |
|                  CALL CGESVJ( 'L', 'U', 'N', N,N, U, LDU, SVA, N, A,
 | |
|      $                LDA, CDUMMY, -1, RDUMMY, -1, IERR )
 | |
|                  LWRK_CGESVJ = INT( CDUMMY(1) )
 | |
|                  CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
 | |
|      $               LDU, CDUMMY, -1, IERR )
 | |
|                  LWRK_CUNMQRM = INT( CDUMMY(1) )
 | |
|                  IF ( ERREST ) THEN
 | |
|                  OPTWRK = N + MAX( LWRK_CGEQP3, LWCON, N+LWRK_CGEQRF,
 | |
|      $                             LWRK_CGESVJ, LWRK_CUNMQRM )
 | |
|                  ELSE
 | |
|                  OPTWRK = N + MAX( LWRK_CGEQP3, N+LWRK_CGEQRF,
 | |
|      $                             LWRK_CGESVJ, LWRK_CUNMQRM )
 | |
|                  END IF
 | |
|              END IF
 | |
|              IF ( L2TRAN .OR. ROWPIV ) THEN 
 | |
|                  IF ( ERREST ) THEN 
 | |
|                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
 | |
|                  ELSE
 | |
|                     MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ )
 | |
|                  END IF                 
 | |
|              ELSE
 | |
|                  IF ( ERREST ) THEN 
 | |
|                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
 | |
|                  ELSE
 | |
|                     MINRWRK = MAX( 7, LRWQP3, LRWSVDJ )
 | |
|                  END IF                
 | |
|              END IF 
 | |
|              IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
 | |
|           ELSE
 | |
| *            .. minimal and optimal sizes of the complex workspace if the
 | |
| *            full SVD is requested
 | |
|              IF ( .NOT. JRACC ) THEN                
 | |
|                  IF ( ERREST ) THEN 
 | |
|                     MINWRK = MAX( N+LWQP3, N+LWCON,  2*N+N**2+LWCON, 
 | |
|      $                         2*N+LWQRF,         2*N+LWQP3, 
 | |
|      $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
 | |
|      $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV, 
 | |
|      $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ, 
 | |
|      $                         N+N**2+LWSVDJ,   N+LWUNMQRM )
 | |
|                  ELSE
 | |
|                     MINWRK = MAX( N+LWQP3,        2*N+N**2+LWCON, 
 | |
|      $                         2*N+LWQRF,         2*N+LWQP3, 
 | |
|      $                         2*N+N**2+N+LWLQF,  2*N+N**2+N+N**2+LWCON,
 | |
|      $                         2*N+N**2+N+LWSVDJ, 2*N+N**2+N+LWSVDJV,
 | |
|      $                         2*N+N**2+N+LWUNMQR,2*N+N**2+N+LWUNMLQ,
 | |
|      $                         N+N**2+LWSVDJ,      N+LWUNMQRM ) 
 | |
|                  END IF 
 | |
|                  MINIWRK = MINIWRK + N 
 | |
|                  IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
 | |
|              ELSE
 | |
|                  IF ( ERREST ) THEN 
 | |
|                     MINWRK = MAX( N+LWQP3, N+LWCON, 2*N+LWQRF, 
 | |
|      $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
 | |
|      $                         N+LWUNMQRM )
 | |
|                  ELSE
 | |
|                     MINWRK = MAX( N+LWQP3, 2*N+LWQRF, 
 | |
|      $                         2*N+N**2+LWSVDJV, 2*N+N**2+N+LWUNMQR, 
 | |
|      $                         N+LWUNMQRM ) 
 | |
|                  END IF   
 | |
|                  IF ( ROWPIV .OR. L2TRAN ) MINIWRK = MINIWRK + M
 | |
|              END IF
 | |
|              IF ( LQUERY ) THEN
 | |
|                  CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
 | |
|      $                LDU, CDUMMY, -1, IERR )
 | |
|                  LWRK_CUNMQRM = INT( CDUMMY(1) )
 | |
|                  CALL CUNMQR( 'L', 'N', N, N, N, A, LDA, CDUMMY, U,
 | |
|      $                LDU, CDUMMY, -1, IERR )
 | |
|                  LWRK_CUNMQR = INT( CDUMMY(1) )
 | |
|                  IF ( .NOT. JRACC ) THEN
 | |
|                      CALL CGEQP3( N,N, A, LDA, IWORK, CDUMMY,CDUMMY, -1,
 | |
|      $                    RDUMMY, IERR )
 | |
|                      LWRK_CGEQP3N = INT( CDUMMY(1) )
 | |
|                      CALL CGESVJ( 'L', 'U', 'N', N, N, U, LDU, SVA,
 | |
|      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
 | |
|                      LWRK_CGESVJ = INT( CDUMMY(1) )
 | |
|                      CALL CGESVJ( 'U', 'U', 'N', N, N, U, LDU, SVA,
 | |
|      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
 | |
|                      LWRK_CGESVJU = INT( CDUMMY(1) )
 | |
|                      CALL CGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
 | |
|      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
 | |
|                      LWRK_CGESVJV = INT( CDUMMY(1) )
 | |
|                      CALL CUNMLQ( 'L', 'C', N, N, N, A, LDA, CDUMMY,
 | |
|      $                    V, LDV, CDUMMY, -1, IERR )
 | |
|                      LWRK_CUNMLQ = INT( CDUMMY(1) )
 | |
|                      IF ( ERREST ) THEN 
 | |
|                        OPTWRK = MAX( N+LWRK_CGEQP3, N+LWCON, 
 | |
|      $                          2*N+N**2+LWCON, 2*N+LWRK_CGEQRF, 
 | |
|      $                          2*N+LWRK_CGEQP3N, 
 | |
|      $                          2*N+N**2+N+LWRK_CGELQF,  
 | |
|      $                          2*N+N**2+N+N**2+LWCON,
 | |
|      $                          2*N+N**2+N+LWRK_CGESVJ, 
 | |
|      $                          2*N+N**2+N+LWRK_CGESVJV,               
 | |
|      $                          2*N+N**2+N+LWRK_CUNMQR,
 | |
|      $                          2*N+N**2+N+LWRK_CUNMLQ, 
 | |
|      $                          N+N**2+LWRK_CGESVJU,                  
 | |
|      $                          N+LWRK_CUNMQRM )
 | |
|                      ELSE
 | |
|                        OPTWRK = MAX( N+LWRK_CGEQP3,  
 | |
|      $                          2*N+N**2+LWCON, 2*N+LWRK_CGEQRF, 
 | |
|      $                          2*N+LWRK_CGEQP3N, 
 | |
|      $                          2*N+N**2+N+LWRK_CGELQF,  
 | |
|      $                          2*N+N**2+N+N**2+LWCON,
 | |
|      $                          2*N+N**2+N+LWRK_CGESVJ,               
 | |
|      $                          2*N+N**2+N+LWRK_CGESVJV, 
 | |
|      $                          2*N+N**2+N+LWRK_CUNMQR,
 | |
|      $                          2*N+N**2+N+LWRK_CUNMLQ, 
 | |
|      $                          N+N**2+LWRK_CGESVJU,
 | |
|      $                          N+LWRK_CUNMQRM )
 | |
|                      END IF                    
 | |
|                  ELSE
 | |
|                      CALL CGESVJ( 'L', 'U', 'V', N, N, U, LDU, SVA,
 | |
|      $                    N, V, LDV, CDUMMY, -1, RDUMMY, -1, IERR )
 | |
|                      LWRK_CGESVJV = INT( CDUMMY(1) )
 | |
|                      CALL CUNMQR( 'L', 'N', N, N, N, CDUMMY, N, CDUMMY,
 | |
|      $                    V, LDV, CDUMMY, -1, IERR )
 | |
|                      LWRK_CUNMQR = INT( CDUMMY(1) )
 | |
|                      CALL CUNMQR( 'L', 'N', M, N, N, A, LDA, CDUMMY, U,
 | |
|      $                    LDU, CDUMMY, -1, IERR )
 | |
|                      LWRK_CUNMQRM = INT( CDUMMY(1) )
 | |
|                      IF ( ERREST ) THEN 
 | |
|                         OPTWRK = MAX( N+LWRK_CGEQP3, N+LWCON,   
 | |
|      $                           2*N+LWRK_CGEQRF, 2*N+N**2,  
 | |
|      $                           2*N+N**2+LWRK_CGESVJV,  
 | |
|      $                           2*N+N**2+N+LWRK_CUNMQR,N+LWRK_CUNMQRM )
 | |
|                      ELSE
 | |
|                         OPTWRK = MAX( N+LWRK_CGEQP3, 2*N+LWRK_CGEQRF,  
 | |
|      $                           2*N+N**2, 2*N+N**2+LWRK_CGESVJV, 
 | |
|      $                           2*N+N**2+N+LWRK_CUNMQR, 
 | |
|      $                           N+LWRK_CUNMQRM )   
 | |
|                      END IF                  
 | |
|                  END IF               
 | |
|              END IF 
 | |
|              IF ( L2TRAN .OR. ROWPIV ) THEN 
 | |
|                  MINRWRK = MAX( 7, 2*M,  LRWQP3, LRWSVDJ, LRWCON )
 | |
|              ELSE
 | |
|                  MINRWRK = MAX( 7, LRWQP3, LRWSVDJ, LRWCON )
 | |
|              END IF 
 | |
|           END IF
 | |
|           MINWRK = MAX( 2, MINWRK )
 | |
|           OPTWRK = MAX( OPTWRK, MINWRK )
 | |
|           IF ( LWORK  .LT. MINWRK  .AND. (.NOT.LQUERY) ) INFO = - 17
 | |
|           IF ( LRWORK .LT. MINRWRK .AND. (.NOT.LQUERY) ) INFO = - 19   
 | |
|       END IF
 | |
| *      
 | |
|       IF ( INFO .NE. 0 ) THEN
 | |
| *       #:(
 | |
|          CALL XERBLA( 'CGEJSV', - INFO )
 | |
|          RETURN
 | |
|       ELSE IF ( LQUERY ) THEN
 | |
|           CWORK(1) = OPTWRK
 | |
|           CWORK(2) = MINWRK
 | |
|           RWORK(1) = MINRWRK
 | |
|           IWORK(1) = MAX( 4, MINIWRK )
 | |
|           RETURN   
 | |
|       END IF
 | |
| *
 | |
| *     Quick return for void matrix (Y3K safe)
 | |
| * #:)
 | |
|       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
 | |
|          IWORK(1:4) = 0
 | |
|          RWORK(1:7) = 0
 | |
|          RETURN
 | |
|       ENDIF
 | |
| *
 | |
| *     Determine whether the matrix U should be M x N or M x M
 | |
| *
 | |
|       IF ( LSVEC ) THEN
 | |
|          N1 = N
 | |
|          IF ( LSAME( JOBU, 'F' ) ) N1 = M
 | |
|       END IF
 | |
| *
 | |
| *     Set numerical parameters
 | |
| *
 | |
| *!    NOTE: Make sure SLAMCH() does not fail on the target architecture.
 | |
| *
 | |
|       EPSLN = SLAMCH('Epsilon')
 | |
|       SFMIN = SLAMCH('SafeMinimum')
 | |
|       SMALL = SFMIN / EPSLN
 | |
|       BIG   = SLAMCH('O')
 | |
| *     BIG   = ONE / SFMIN
 | |
| *
 | |
| *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
 | |
| *
 | |
| *(!)  If necessary, scale SVA() to protect the largest norm from
 | |
| *     overflow. It is possible that this scaling pushes the smallest
 | |
| *     column norm left from the underflow threshold (extreme case).
 | |
| *
 | |
|       SCALEM  = ONE / SQRT(REAL(M)*REAL(N))
 | |
|       NOSCAL  = .TRUE.
 | |
|       GOSCAL  = .TRUE.
 | |
|       DO 1874 p = 1, N
 | |
|          AAPP = ZERO
 | |
|          AAQQ = ONE
 | |
|          CALL CLASSQ( M, A(1,p), 1, AAPP, AAQQ )
 | |
|          IF ( AAPP .GT. BIG ) THEN
 | |
|             INFO = - 9
 | |
|             CALL XERBLA( 'CGEJSV', -INFO )
 | |
|             RETURN
 | |
|          END IF
 | |
|          AAQQ = SQRT(AAQQ)
 | |
|          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
 | |
|             SVA(p)  = AAPP * AAQQ
 | |
|          ELSE
 | |
|             NOSCAL  = .FALSE.
 | |
|             SVA(p)  = AAPP * ( AAQQ * SCALEM )
 | |
|             IF ( GOSCAL ) THEN
 | |
|                GOSCAL = .FALSE.
 | |
|                CALL SSCAL( p-1, SCALEM, SVA, 1 )
 | |
|             END IF
 | |
|          END IF
 | |
|  1874 CONTINUE
 | |
| *
 | |
|       IF ( NOSCAL ) SCALEM = ONE
 | |
| *
 | |
|       AAPP = ZERO
 | |
|       AAQQ = BIG
 | |
|       DO 4781 p = 1, N
 | |
|          AAPP = MAX( AAPP, SVA(p) )
 | |
|          IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
 | |
|  4781 CONTINUE
 | |
| *
 | |
| *     Quick return for zero M x N matrix
 | |
| * #:)
 | |
|       IF ( AAPP .EQ. ZERO ) THEN
 | |
|          IF ( LSVEC ) CALL CLASET( 'G', M, N1, CZERO, CONE, U, LDU )
 | |
|          IF ( RSVEC ) CALL CLASET( 'G', N, N,  CZERO, CONE, V, LDV )
 | |
|          RWORK(1) = ONE
 | |
|          RWORK(2) = ONE
 | |
|          IF ( ERREST ) RWORK(3) = ONE
 | |
|          IF ( LSVEC .AND. RSVEC ) THEN
 | |
|             RWORK(4) = ONE
 | |
|             RWORK(5) = ONE
 | |
|          END IF
 | |
|          IF ( L2TRAN ) THEN
 | |
|             RWORK(6) = ZERO
 | |
|             RWORK(7) = ZERO
 | |
|          END IF
 | |
|          IWORK(1) = 0
 | |
|          IWORK(2) = 0
 | |
|          IWORK(3) = 0
 | |
|          IWORK(4) = -1
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Issue warning if denormalized column norms detected. Override the
 | |
| *     high relative accuracy request. Issue licence to kill nonzero columns
 | |
| *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
 | |
| * #:(
 | |
|       WARNING = 0
 | |
|       IF ( AAQQ .LE. SFMIN ) THEN
 | |
|          L2RANK = .TRUE.
 | |
|          L2KILL = .TRUE.
 | |
|          WARNING = 1
 | |
|       END IF
 | |
| *
 | |
| *     Quick return for one-column matrix
 | |
| * #:)
 | |
|       IF ( N .EQ. 1 ) THEN
 | |
| *
 | |
|          IF ( LSVEC ) THEN
 | |
|             CALL CLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
 | |
|             CALL CLACPY( 'A', M, 1, A, LDA, U, LDU )
 | |
| *           computing all M left singular vectors of the M x 1 matrix
 | |
|             IF ( N1 .NE. N  ) THEN
 | |
|               CALL CGEQRF( M, N, U,LDU, CWORK, CWORK(N+1),LWORK-N,IERR )
 | |
|               CALL CUNGQR( M,N1,1, U,LDU,CWORK,CWORK(N+1),LWORK-N,IERR )
 | |
|               CALL CCOPY( M, A(1,1), 1, U(1,1), 1 )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF ( RSVEC ) THEN
 | |
|              V(1,1) = CONE
 | |
|          END IF
 | |
|          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
 | |
|             SVA(1)  = SVA(1) / SCALEM
 | |
|             SCALEM  = ONE
 | |
|          END IF
 | |
|          RWORK(1) = ONE / SCALEM
 | |
|          RWORK(2) = ONE
 | |
|          IF ( SVA(1) .NE. ZERO ) THEN
 | |
|             IWORK(1) = 1
 | |
|             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
 | |
|                IWORK(2) = 1
 | |
|             ELSE
 | |
|                IWORK(2) = 0
 | |
|             END IF
 | |
|          ELSE
 | |
|             IWORK(1) = 0
 | |
|             IWORK(2) = 0
 | |
|          END IF
 | |
|          IWORK(3) = 0
 | |
|          IWORK(4) = -1
 | |
|          IF ( ERREST ) RWORK(3) = ONE
 | |
|          IF ( LSVEC .AND. RSVEC ) THEN
 | |
|             RWORK(4) = ONE
 | |
|             RWORK(5) = ONE
 | |
|          END IF
 | |
|          IF ( L2TRAN ) THEN
 | |
|             RWORK(6) = ZERO
 | |
|             RWORK(7) = ZERO
 | |
|          END IF
 | |
|          RETURN
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       TRANSP = .FALSE.
 | |
| *
 | |
|       AATMAX = -ONE
 | |
|       AATMIN =  BIG
 | |
|       IF ( ROWPIV .OR. L2TRAN ) THEN
 | |
| *
 | |
| *     Compute the row norms, needed to determine row pivoting sequence
 | |
| *     (in the case of heavily row weighted A, row pivoting is strongly
 | |
| *     advised) and to collect information needed to compare the
 | |
| *     structures of A * A^* and A^* * A (in the case L2TRAN.EQ..TRUE.).
 | |
| *
 | |
|          IF ( L2TRAN ) THEN
 | |
|             DO 1950 p = 1, M
 | |
|                XSC   = ZERO
 | |
|                TEMP1 = ONE
 | |
|                CALL CLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
 | |
| *              CLASSQ gets both the ell_2 and the ell_infinity norm
 | |
| *              in one pass through the vector
 | |
|                RWORK(M+p)  = XSC * SCALEM
 | |
|                RWORK(p)    = XSC * (SCALEM*SQRT(TEMP1))
 | |
|                AATMAX = MAX( AATMAX, RWORK(p) )
 | |
|                IF (RWORK(p) .NE. ZERO) 
 | |
|      $            AATMIN = MIN(AATMIN,RWORK(p))
 | |
|  1950       CONTINUE
 | |
|          ELSE
 | |
|             DO 1904 p = 1, M
 | |
|                RWORK(M+p) = SCALEM*ABS( A(p,ICAMAX(N,A(p,1),LDA)) )
 | |
|                AATMAX = MAX( AATMAX, RWORK(M+p) )
 | |
|                AATMIN = MIN( AATMIN, RWORK(M+p) )
 | |
|  1904       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     For square matrix A try to determine whether A^*  would be better
 | |
| *     input for the preconditioned Jacobi SVD, with faster convergence.
 | |
| *     The decision is based on an O(N) function of the vector of column
 | |
| *     and row norms of A, based on the Shannon entropy. This should give
 | |
| *     the right choice in most cases when the difference actually matters.
 | |
| *     It may fail and pick the slower converging side.
 | |
| *
 | |
|       ENTRA  = ZERO
 | |
|       ENTRAT = ZERO
 | |
|       IF ( L2TRAN ) THEN
 | |
| *
 | |
|          XSC   = ZERO
 | |
|          TEMP1 = ONE
 | |
|          CALL SLASSQ( N, SVA, 1, XSC, TEMP1 )
 | |
|          TEMP1 = ONE / TEMP1
 | |
| *
 | |
|          ENTRA = ZERO
 | |
|          DO 1113 p = 1, N
 | |
|             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
 | |
|             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * ALOG(BIG1)
 | |
|  1113    CONTINUE
 | |
|          ENTRA = - ENTRA / ALOG(REAL(N))
 | |
| *
 | |
| *        Now, SVA().^2/Trace(A^* * A) is a point in the probability simplex.
 | |
| *        It is derived from the diagonal of  A^* * A.  Do the same with the
 | |
| *        diagonal of A * A^*, compute the entropy of the corresponding
 | |
| *        probability distribution. Note that A * A^* and A^* * A have the
 | |
| *        same trace.
 | |
| *
 | |
|          ENTRAT = ZERO
 | |
|          DO 1114 p = 1, M
 | |
|             BIG1 = ( ( RWORK(p) / XSC )**2 ) * TEMP1
 | |
|             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * ALOG(BIG1)
 | |
|  1114    CONTINUE
 | |
|          ENTRAT = - ENTRAT / ALOG(REAL(M))
 | |
| *
 | |
| *        Analyze the entropies and decide A or A^*. Smaller entropy
 | |
| *        usually means better input for the algorithm.
 | |
| *
 | |
|          TRANSP = ( ENTRAT .LT. ENTRA )
 | |
| * 
 | |
| *        If A^* is better than A, take the adjoint of A. This is allowed
 | |
| *        only for square matrices, M=N.  
 | |
|          IF ( TRANSP ) THEN
 | |
| *           In an optimal implementation, this trivial transpose
 | |
| *           should be replaced with faster transpose.
 | |
|             DO 1115 p = 1, N - 1
 | |
|                A(p,p) = CONJG(A(p,p))
 | |
|                DO 1116 q = p + 1, N
 | |
|                    CTEMP = CONJG(A(q,p))
 | |
|                   A(q,p) = CONJG(A(p,q))
 | |
|                   A(p,q) = CTEMP
 | |
|  1116          CONTINUE
 | |
|  1115       CONTINUE
 | |
|             A(N,N) = CONJG(A(N,N))
 | |
|             DO 1117 p = 1, N
 | |
|                RWORK(M+p) = SVA(p)
 | |
|                SVA(p) = RWORK(p)
 | |
| *              previously computed row 2-norms are now column 2-norms
 | |
| *              of the transposed matrix
 | |
|  1117       CONTINUE
 | |
|             TEMP1  = AAPP
 | |
|             AAPP   = AATMAX
 | |
|             AATMAX = TEMP1
 | |
|             TEMP1  = AAQQ
 | |
|             AAQQ   = AATMIN
 | |
|             AATMIN = TEMP1
 | |
|             KILL   = LSVEC
 | |
|             LSVEC  = RSVEC
 | |
|             RSVEC  = KILL
 | |
|             IF ( LSVEC ) N1 = N
 | |
| *
 | |
|             ROWPIV = .TRUE.
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *     END IF L2TRAN
 | |
| *
 | |
| *     Scale the matrix so that its maximal singular value remains less
 | |
| *     than SQRT(BIG) -- the matrix is scaled so that its maximal column
 | |
| *     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep
 | |
| *     SQRT(BIG) instead of BIG is the fact that CGEJSV uses LAPACK and
 | |
| *     BLAS routines that, in some implementations, are not capable of
 | |
| *     working in the full interval [SFMIN,BIG] and that they may provoke
 | |
| *     overflows in the intermediate results. If the singular values spread
 | |
| *     from SFMIN to BIG, then CGESVJ will compute them. So, in that case,
 | |
| *     one should use CGESVJ instead of CGEJSV.
 | |
|       BIG1   = SQRT( BIG )
 | |
|       TEMP1  = SQRT( BIG / REAL(N) )
 | |
| *     >> for future updates: allow bigger range, i.e. the largest column
 | |
| *     will be allowed up to BIG/N and CGESVJ will do the rest. However, for
 | |
| *     this all other (LAPACK) components must allow such a range.      
 | |
| *     TEMP1  = BIG/REAL(N)
 | |
| *     TEMP1  = BIG * EPSLN  this should 'almost' work with current LAPACK components
 | |
|       CALL SLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
 | |
|       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
 | |
|           AAQQ = ( AAQQ / AAPP ) * TEMP1
 | |
|       ELSE
 | |
|           AAQQ = ( AAQQ * TEMP1 ) / AAPP
 | |
|       END IF
 | |
|       TEMP1 = TEMP1 * SCALEM
 | |
|       CALL CLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
 | |
| *
 | |
| *     To undo scaling at the end of this procedure, multiply the
 | |
| *     computed singular values with USCAL2 / USCAL1.
 | |
| *
 | |
|       USCAL1 = TEMP1
 | |
|       USCAL2 = AAPP
 | |
| *
 | |
|       IF ( L2KILL ) THEN
 | |
| *        L2KILL enforces computation of nonzero singular values in
 | |
| *        the restricted range of condition number of the initial A,
 | |
| *        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).
 | |
|          XSC = SQRT( SFMIN )
 | |
|       ELSE
 | |
|          XSC = SMALL
 | |
| *
 | |
| *        Now, if the condition number of A is too big,
 | |
| *        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,
 | |
| *        as a precaution measure, the full SVD is computed using CGESVJ
 | |
| *        with accumulated Jacobi rotations. This provides numerically
 | |
| *        more robust computation, at the cost of slightly increased run
 | |
| *        time. Depending on the concrete implementation of BLAS and LAPACK
 | |
| *        (i.e. how they behave in presence of extreme ill-conditioning) the
 | |
| *        implementor may decide to remove this switch.
 | |
|          IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
 | |
|             JRACC = .TRUE.
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
|       IF ( AAQQ .LT. XSC ) THEN
 | |
|          DO 700 p = 1, N
 | |
|             IF ( SVA(p) .LT. XSC ) THEN
 | |
|                CALL CLASET( 'A', M, 1, CZERO, CZERO, A(1,p), LDA )
 | |
|                SVA(p) = ZERO
 | |
|             END IF
 | |
|  700     CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Preconditioning using QR factorization with pivoting
 | |
| *
 | |
|       IF ( ROWPIV ) THEN
 | |
| *        Optional row permutation (Bjoerck row pivoting):
 | |
| *        A result by Cox and Higham shows that the Bjoerck's
 | |
| *        row pivoting combined with standard column pivoting
 | |
| *        has similar effect as Powell-Reid complete pivoting.
 | |
| *        The ell-infinity norms of A are made nonincreasing.
 | |
|          IF ( ( LSVEC .AND. RSVEC ) .AND. .NOT.( JRACC ) ) THEN 
 | |
|               IWOFF = 2*N
 | |
|          ELSE
 | |
|               IWOFF = N
 | |
|          END IF
 | |
|          DO 1952 p = 1, M - 1
 | |
|             q = ISAMAX( M-p+1, RWORK(M+p), 1 ) + p - 1
 | |
|             IWORK(IWOFF+p) = q
 | |
|             IF ( p .NE. q ) THEN
 | |
|                TEMP1      = RWORK(M+p)
 | |
|                RWORK(M+p) = RWORK(M+q)
 | |
|                RWORK(M+q) = TEMP1
 | |
|             END IF
 | |
|  1952    CONTINUE
 | |
|          CALL CLASWP( N, A, LDA, 1, M-1, IWORK(IWOFF+1), 1 )
 | |
|       END IF
 | |
| *
 | |
| *     End of the preparation phase (scaling, optional sorting and
 | |
| *     transposing, optional flushing of small columns).
 | |
| *
 | |
| *     Preconditioning
 | |
| *
 | |
| *     If the full SVD is needed, the right singular vectors are computed
 | |
| *     from a matrix equation, and for that we need theoretical analysis
 | |
| *     of the Businger-Golub pivoting. So we use CGEQP3 as the first RR QRF.
 | |
| *     In all other cases the first RR QRF can be chosen by other criteria
 | |
| *     (eg speed by replacing global with restricted window pivoting, such
 | |
| *     as in xGEQPX from TOMS # 782). Good results will be obtained using
 | |
| *     xGEQPX with properly (!) chosen numerical parameters.
 | |
| *     Any improvement of CGEQP3 improves overall performance of CGEJSV.
 | |
| *
 | |
| *     A * P1 = Q1 * [ R1^* 0]^*:
 | |
|       DO 1963 p = 1, N
 | |
| *        .. all columns are free columns
 | |
|          IWORK(p) = 0
 | |
|  1963 CONTINUE
 | |
|       CALL CGEQP3( M, N, A, LDA, IWORK, CWORK, CWORK(N+1), LWORK-N,
 | |
|      $             RWORK, IERR )
 | |
| *
 | |
| *     The upper triangular matrix R1 from the first QRF is inspected for
 | |
| *     rank deficiency and possibilities for deflation, or possible
 | |
| *     ill-conditioning. Depending on the user specified flag L2RANK,
 | |
| *     the procedure explores possibilities to reduce the numerical
 | |
| *     rank by inspecting the computed upper triangular factor. If
 | |
| *     L2RANK or L2ABER are up, then CGEJSV will compute the SVD of
 | |
| *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
 | |
| *
 | |
|       NR = 1
 | |
|       IF ( L2ABER ) THEN
 | |
| *        Standard absolute error bound suffices. All sigma_i with
 | |
| *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
 | |
| *        aggressive enforcement of lower numerical rank by introducing a
 | |
| *        backward error of the order of N*EPSLN*||A||.
 | |
|          TEMP1 = SQRT(REAL(N))*EPSLN
 | |
|          DO 3001 p = 2, N
 | |
|             IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN
 | |
|                NR = NR + 1
 | |
|             ELSE
 | |
|                GO TO 3002
 | |
|             END IF
 | |
|  3001    CONTINUE
 | |
|  3002    CONTINUE
 | |
|       ELSE IF ( L2RANK ) THEN
 | |
| *        .. similarly as above, only slightly more gentle (less aggressive).
 | |
| *        Sudden drop on the diagonal of R1 is used as the criterion for
 | |
| *        close-to-rank-deficient.
 | |
|          TEMP1 = SQRT(SFMIN)
 | |
|          DO 3401 p = 2, N
 | |
|             IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.
 | |
|      $           ( ABS(A(p,p)) .LT. SMALL ) .OR.
 | |
|      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
 | |
|             NR = NR + 1
 | |
|  3401    CONTINUE
 | |
|  3402    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *        The goal is high relative accuracy. However, if the matrix
 | |
| *        has high scaled condition number the relative accuracy is in
 | |
| *        general not feasible. Later on, a condition number estimator
 | |
| *        will be deployed to estimate the scaled condition number.
 | |
| *        Here we just remove the underflowed part of the triangular
 | |
| *        factor. This prevents the situation in which the code is
 | |
| *        working hard to get the accuracy not warranted by the data.
 | |
|          TEMP1  = SQRT(SFMIN)
 | |
|          DO 3301 p = 2, N
 | |
|             IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.
 | |
|      $           ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
 | |
|             NR = NR + 1
 | |
|  3301    CONTINUE
 | |
|  3302    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       ALMORT = .FALSE.
 | |
|       IF ( NR .EQ. N ) THEN
 | |
|          MAXPRJ = ONE
 | |
|          DO 3051 p = 2, N
 | |
|             TEMP1  = ABS(A(p,p)) / SVA(IWORK(p))
 | |
|             MAXPRJ = MIN( MAXPRJ, TEMP1 )
 | |
|  3051    CONTINUE
 | |
|          IF ( MAXPRJ**2 .GE. ONE - REAL(N)*EPSLN ) ALMORT = .TRUE.
 | |
|       END IF
 | |
| *
 | |
| *
 | |
|       SCONDA = - ONE
 | |
|       CONDR1 = - ONE
 | |
|       CONDR2 = - ONE
 | |
| *
 | |
|       IF ( ERREST ) THEN
 | |
|          IF ( N .EQ. NR ) THEN
 | |
|             IF ( RSVEC ) THEN
 | |
| *              .. V is available as workspace
 | |
|                CALL CLACPY( 'U', N, N, A, LDA, V, LDV )
 | |
|                DO 3053 p = 1, N
 | |
|                   TEMP1 = SVA(IWORK(p))
 | |
|                   CALL CSSCAL( p, ONE/TEMP1, V(1,p), 1 )
 | |
|  3053          CONTINUE
 | |
|                IF ( LSVEC )THEN
 | |
|                    CALL CPOCON( 'U', N, V, LDV, ONE, TEMP1,
 | |
|      $                  CWORK(N+1), RWORK, IERR )
 | |
|                ELSE
 | |
|                    CALL CPOCON( 'U', N, V, LDV, ONE, TEMP1,
 | |
|      $                  CWORK, RWORK, IERR )
 | |
|                END IF               
 | |
| *          
 | |
|             ELSE IF ( LSVEC ) THEN
 | |
| *              .. U is available as workspace
 | |
|                CALL CLACPY( 'U', N, N, A, LDA, U, LDU )
 | |
|                DO 3054 p = 1, N
 | |
|                   TEMP1 = SVA(IWORK(p))
 | |
|                   CALL CSSCAL( p, ONE/TEMP1, U(1,p), 1 )
 | |
|  3054          CONTINUE
 | |
|                CALL CPOCON( 'U', N, U, LDU, ONE, TEMP1,
 | |
|      $              CWORK(N+1), RWORK, IERR )
 | |
|             ELSE
 | |
|                CALL CLACPY( 'U', N, N, A, LDA, CWORK, N )
 | |
| *[]            CALL CLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
 | |
| *              Change: here index shifted by N to the left, CWORK(1:N) 
 | |
| *              not needed for SIGMA only computation
 | |
|                DO 3052 p = 1, N
 | |
|                   TEMP1 = SVA(IWORK(p))
 | |
| *[]               CALL CSSCAL( p, ONE/TEMP1, CWORK(N+(p-1)*N+1), 1 )
 | |
|                   CALL CSSCAL( p, ONE/TEMP1, CWORK((p-1)*N+1), 1 )
 | |
|  3052          CONTINUE
 | |
| *           .. the columns of R are scaled to have unit Euclidean lengths.
 | |
| *[]               CALL CPOCON( 'U', N, CWORK(N+1), N, ONE, TEMP1,
 | |
| *[]     $              CWORK(N+N*N+1), RWORK, IERR )
 | |
|                CALL CPOCON( 'U', N, CWORK, N, ONE, TEMP1,
 | |
|      $              CWORK(N*N+1), RWORK, IERR )               
 | |
| *              
 | |
|             END IF
 | |
|             IF ( TEMP1 .NE. ZERO ) THEN 
 | |
|                SCONDA = ONE / SQRT(TEMP1)
 | |
|             ELSE
 | |
|                SCONDA = - ONE
 | |
|             END IF
 | |
| *           SCONDA is an estimate of SQRT(||(R^* * R)^(-1)||_1).
 | |
| *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
 | |
|          ELSE
 | |
|             SCONDA = - ONE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )
 | |
| *     If there is no violent scaling, artificial perturbation is not needed.
 | |
| *
 | |
| *     Phase 3:
 | |
| *
 | |
|       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
 | |
| *
 | |
| *         Singular Values only
 | |
| *
 | |
| *         .. transpose A(1:NR,1:N)
 | |
|          DO 1946 p = 1, MIN( N-1, NR )
 | |
|             CALL CCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
 | |
|             CALL CLACGV( N-p+1, A(p,p), 1 )
 | |
|  1946    CONTINUE
 | |
|          IF ( NR .EQ. N ) A(N,N) = CONJG(A(N,N))
 | |
| *
 | |
| *        The following two DO-loops introduce small relative perturbation
 | |
| *        into the strict upper triangle of the lower triangular matrix.
 | |
| *        Small entries below the main diagonal are also changed.
 | |
| *        This modification is useful if the computing environment does not
 | |
| *        provide/allow FLUSH TO ZERO underflow, for it prevents many
 | |
| *        annoying denormalized numbers in case of strongly scaled matrices.
 | |
| *        The perturbation is structured so that it does not introduce any
 | |
| *        new perturbation of the singular values, and it does not destroy
 | |
| *        the job done by the preconditioner.
 | |
| *        The licence for this perturbation is in the variable L2PERT, which
 | |
| *        should be .FALSE. if FLUSH TO ZERO underflow is active.
 | |
| *
 | |
|          IF ( .NOT. ALMORT ) THEN
 | |
| *
 | |
|             IF ( L2PERT ) THEN
 | |
| *              XSC = SQRT(SMALL)
 | |
|                XSC = EPSLN / REAL(N)
 | |
|                DO 4947 q = 1, NR
 | |
|                   CTEMP = CMPLX(XSC*ABS(A(q,q)),ZERO)
 | |
|                   DO 4949 p = 1, N
 | |
|                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
 | |
|      $                    .OR. ( p .LT. q ) )
 | |
| *     $                     A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
 | |
|      $                     A(p,q) = CTEMP
 | |
|  4949             CONTINUE
 | |
|  4947          CONTINUE
 | |
|             ELSE
 | |
|                CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, A(1,2),LDA )
 | |
|             END IF
 | |
| *
 | |
| *            .. second preconditioning using the QR factorization
 | |
| *
 | |
|             CALL CGEQRF( N,NR, A,LDA, CWORK, CWORK(N+1),LWORK-N, IERR )
 | |
| *
 | |
| *           .. and transpose upper to lower triangular
 | |
|             DO 1948 p = 1, NR - 1
 | |
|                CALL CCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
 | |
|                CALL CLACGV( NR-p+1, A(p,p), 1 )
 | |
|  1948       CONTINUE
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *           Row-cyclic Jacobi SVD algorithm with column pivoting
 | |
| *
 | |
| *           .. again some perturbation (a "background noise") is added
 | |
| *           to drown denormals
 | |
|             IF ( L2PERT ) THEN
 | |
| *              XSC = SQRT(SMALL)
 | |
|                XSC = EPSLN / REAL(N)
 | |
|                DO 1947 q = 1, NR
 | |
|                   CTEMP = CMPLX(XSC*ABS(A(q,q)),ZERO)
 | |
|                   DO 1949 p = 1, NR
 | |
|                      IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )
 | |
|      $                       .OR. ( p .LT. q ) )
 | |
| *     $                   A(p,q) = TEMP1 * ( A(p,q) / ABS(A(p,q)) )
 | |
|      $                   A(p,q) = CTEMP
 | |
|  1949             CONTINUE
 | |
|  1947          CONTINUE
 | |
|             ELSE
 | |
|                CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, A(1,2), LDA )
 | |
|             END IF
 | |
| *
 | |
| *           .. and one-sided Jacobi rotations are started on a lower
 | |
| *           triangular matrix (plus perturbation which is ignored in
 | |
| *           the part which destroys triangular form (confusing?!))
 | |
| *
 | |
|             CALL CGESVJ( 'L', 'N', 'N', NR, NR, A, LDA, SVA,
 | |
|      $                N, V, LDV, CWORK, LWORK, RWORK, LRWORK, INFO )
 | |
| *
 | |
|             SCALEM  = RWORK(1)
 | |
|             NUMRANK = NINT(RWORK(2))
 | |
| *
 | |
| *
 | |
|       ELSE IF ( ( RSVEC .AND. ( .NOT. LSVEC ) .AND. ( .NOT. JRACC ) ) 
 | |
|      $       .OR. 
 | |
|      $   ( JRACC .AND. ( .NOT. LSVEC ) .AND. ( NR .NE. N ) ) ) THEN
 | |
| *
 | |
| *        -> Singular Values and Right Singular Vectors <-
 | |
| *
 | |
|          IF ( ALMORT ) THEN
 | |
| *
 | |
| *           .. in this case NR equals N
 | |
|             DO 1998 p = 1, NR
 | |
|                CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 | |
|                CALL CLACGV( N-p+1, V(p,p), 1 )
 | |
|  1998       CONTINUE
 | |
|             CALL CLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
 | |
| *
 | |
|             CALL CGESVJ( 'L','U','N', N, NR, V, LDV, SVA, NR, A, LDA,
 | |
|      $                  CWORK, LWORK, RWORK, LRWORK, INFO )
 | |
|             SCALEM  = RWORK(1)
 | |
|             NUMRANK = NINT(RWORK(2))
 | |
| 
 | |
|          ELSE
 | |
| *
 | |
| *        .. two more QR factorizations ( one QRF is not enough, two require
 | |
| *        accumulated product of Jacobi rotations, three are perfect )
 | |
| *
 | |
|             CALL CLASET( 'L', NR-1,NR-1, CZERO, CZERO, A(2,1), LDA )
 | |
|             CALL CGELQF( NR,N, A, LDA, CWORK, CWORK(N+1), LWORK-N, IERR)
 | |
|             CALL CLACPY( 'L', NR, NR, A, LDA, V, LDV )
 | |
|             CALL CLASET( 'U', NR-1,NR-1, CZERO, CZERO, V(1,2), LDV )
 | |
|             CALL CGEQRF( NR, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 | |
|      $                   LWORK-2*N, IERR )
 | |
|             DO 8998 p = 1, NR
 | |
|                CALL CCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
 | |
|                CALL CLACGV( NR-p+1, V(p,p), 1 )
 | |
|  8998       CONTINUE
 | |
|             CALL CLASET('U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV)
 | |
| *
 | |
|             CALL CGESVJ( 'L', 'U','N', NR, NR, V,LDV, SVA, NR, U,
 | |
|      $                  LDU, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
 | |
|             SCALEM  = RWORK(1)
 | |
|             NUMRANK = NINT(RWORK(2))
 | |
|             IF ( NR .LT. N ) THEN
 | |
|                CALL CLASET( 'A',N-NR, NR, CZERO,CZERO, V(NR+1,1),  LDV )
 | |
|                CALL CLASET( 'A',NR, N-NR, CZERO,CZERO, V(1,NR+1),  LDV )
 | |
|                CALL CLASET( 'A',N-NR,N-NR,CZERO,CONE, V(NR+1,NR+1),LDV )
 | |
|             END IF
 | |
| *
 | |
|          CALL CUNMLQ( 'L', 'C', N, N, NR, A, LDA, CWORK,
 | |
|      $               V, LDV, CWORK(N+1), LWORK-N, IERR )
 | |
| *
 | |
|          END IF
 | |
| *         .. permute the rows of V
 | |
| *         DO 8991 p = 1, N
 | |
| *            CALL CCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
 | |
| * 8991    CONTINUE
 | |
| *         CALL CLACPY( 'All', N, N, A, LDA, V, LDV )
 | |
|          CALL CLAPMR( .FALSE., N, N, V, LDV, IWORK )
 | |
| *
 | |
|           IF ( TRANSP ) THEN
 | |
|             CALL CLACPY( 'A', N, N, V, LDV, U, LDU )
 | |
|           END IF
 | |
| *
 | |
|       ELSE IF ( JRACC .AND. (.NOT. LSVEC) .AND. ( NR.EQ. N ) ) THEN 
 | |
| *          
 | |
|          CALL CLASET( 'L', N-1,N-1, CZERO, CZERO, A(2,1), LDA )
 | |
| *
 | |
|          CALL CGESVJ( 'U','N','V', N, N, A, LDA, SVA, N, V, LDV,
 | |
|      $               CWORK, LWORK, RWORK, LRWORK, INFO )
 | |
|           SCALEM  = RWORK(1)
 | |
|           NUMRANK = NINT(RWORK(2))
 | |
|           CALL CLAPMR( .FALSE., N, N, V, LDV, IWORK )
 | |
| *
 | |
|       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
 | |
| *
 | |
| *        .. Singular Values and Left Singular Vectors                 ..
 | |
| *
 | |
| *        .. second preconditioning step to avoid need to accumulate
 | |
| *        Jacobi rotations in the Jacobi iterations.
 | |
|          DO 1965 p = 1, NR
 | |
|             CALL CCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
 | |
|             CALL CLACGV( N-p+1, U(p,p), 1 )
 | |
|  1965    CONTINUE
 | |
|          CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 | |
| *
 | |
|          CALL CGEQRF( N, NR, U, LDU, CWORK(N+1), CWORK(2*N+1),
 | |
|      $              LWORK-2*N, IERR )
 | |
| *
 | |
|          DO 1967 p = 1, NR - 1
 | |
|             CALL CCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
 | |
|             CALL CLACGV( N-p+1, U(p,p), 1 )
 | |
|  1967    CONTINUE
 | |
|          CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 | |
| *
 | |
|          CALL CGESVJ( 'L', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
 | |
|      $        LDA, CWORK(N+1), LWORK-N, RWORK, LRWORK, INFO )
 | |
|          SCALEM  = RWORK(1)
 | |
|          NUMRANK = NINT(RWORK(2))
 | |
| *
 | |
|          IF ( NR .LT. M ) THEN
 | |
|             CALL CLASET( 'A',  M-NR, NR,CZERO, CZERO, U(NR+1,1), LDU )
 | |
|             IF ( NR .LT. N1 ) THEN
 | |
|                CALL CLASET( 'A',NR, N1-NR, CZERO, CZERO, U(1,NR+1),LDU )
 | |
|                CALL CLASET( 'A',M-NR,N1-NR,CZERO,CONE,U(NR+1,NR+1),LDU )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 | |
|      $               LDU, CWORK(N+1), LWORK-N, IERR )
 | |
| *
 | |
|          IF ( ROWPIV )
 | |
|      $       CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 | |
| *
 | |
|          DO 1974 p = 1, N1
 | |
|             XSC = ONE / SCNRM2( M, U(1,p), 1 )
 | |
|             CALL CSSCAL( M, XSC, U(1,p), 1 )
 | |
|  1974    CONTINUE
 | |
| *
 | |
|          IF ( TRANSP ) THEN
 | |
|             CALL CLACPY( 'A', N, N, U, LDU, V, LDV )
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        .. Full SVD ..
 | |
| *
 | |
|          IF ( .NOT. JRACC ) THEN
 | |
| *
 | |
|          IF ( .NOT. ALMORT ) THEN
 | |
| *
 | |
| *           Second Preconditioning Step (QRF [with pivoting])
 | |
| *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
 | |
| *           equivalent to an LQF CALL. Since in many libraries the QRF
 | |
| *           seems to be better optimized than the LQF, we do explicit
 | |
| *           transpose and use the QRF. This is subject to changes in an
 | |
| *           optimized implementation of CGEJSV.
 | |
| *
 | |
|             DO 1968 p = 1, NR
 | |
|                CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 | |
|                CALL CLACGV( N-p+1, V(p,p), 1 )
 | |
|  1968       CONTINUE
 | |
| *
 | |
| *           .. the following two loops perturb small entries to avoid
 | |
| *           denormals in the second QR factorization, where they are
 | |
| *           as good as zeros. This is done to avoid painfully slow
 | |
| *           computation with denormals. The relative size of the perturbation
 | |
| *           is a parameter that can be changed by the implementer.
 | |
| *           This perturbation device will be obsolete on machines with
 | |
| *           properly implemented arithmetic.
 | |
| *           To switch it off, set L2PERT=.FALSE. To remove it from  the
 | |
| *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
 | |
| *           The following two loops should be blocked and fused with the
 | |
| *           transposed copy above.
 | |
| *
 | |
|             IF ( L2PERT ) THEN
 | |
|                XSC = SQRT(SMALL)
 | |
|                DO 2969 q = 1, NR
 | |
|                   CTEMP = CMPLX(XSC*ABS( V(q,q) ),ZERO)
 | |
|                   DO 2968 p = 1, N
 | |
|                      IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
 | |
|      $                   .OR. ( p .LT. q ) )
 | |
| *     $                   V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
 | |
|      $                   V(p,q) = CTEMP
 | |
|                      IF ( p .LT. q ) V(p,q) = - V(p,q)
 | |
|  2968             CONTINUE
 | |
|  2969          CONTINUE
 | |
|             ELSE
 | |
|                CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
 | |
|             END IF
 | |
| *
 | |
| *           Estimate the row scaled condition number of R1
 | |
| *           (If R1 is rectangular, N > NR, then the condition number
 | |
| *           of the leading NR x NR submatrix is estimated.)
 | |
| *
 | |
|             CALL CLACPY( 'L', NR, NR, V, LDV, CWORK(2*N+1), NR )
 | |
|             DO 3950 p = 1, NR
 | |
|                TEMP1 = SCNRM2(NR-p+1,CWORK(2*N+(p-1)*NR+p),1)
 | |
|                CALL CSSCAL(NR-p+1,ONE/TEMP1,CWORK(2*N+(p-1)*NR+p),1)
 | |
|  3950       CONTINUE
 | |
|             CALL CPOCON('L',NR,CWORK(2*N+1),NR,ONE,TEMP1,
 | |
|      $                   CWORK(2*N+NR*NR+1),RWORK,IERR)
 | |
|             CONDR1 = ONE / SQRT(TEMP1)
 | |
| *           .. here need a second opinion on the condition number
 | |
| *           .. then assume worst case scenario
 | |
| *           R1 is OK for inverse <=> CONDR1 .LT. REAL(N)
 | |
| *           more conservative    <=> CONDR1 .LT. SQRT(REAL(N))
 | |
| *
 | |
|             COND_OK = SQRT(SQRT(REAL(NR)))
 | |
| *[TP]       COND_OK is a tuning parameter.
 | |
| *
 | |
|             IF ( CONDR1 .LT. COND_OK ) THEN
 | |
| *              .. the second QRF without pivoting. Note: in an optimized
 | |
| *              implementation, this QRF should be implemented as the QRF
 | |
| *              of a lower triangular matrix.
 | |
| *              R1^* = Q2 * R2
 | |
|                CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 | |
|      $              LWORK-2*N, IERR )
 | |
| *
 | |
|                IF ( L2PERT ) THEN
 | |
|                   XSC = SQRT(SMALL)/EPSLN
 | |
|                   DO 3959 p = 2, NR
 | |
|                      DO 3958 q = 1, p - 1
 | |
|                         CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
 | |
|      $                              ZERO)
 | |
|                         IF ( ABS(V(q,p)) .LE. TEMP1 )
 | |
| *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
 | |
|      $                     V(q,p) = CTEMP
 | |
|  3958                CONTINUE
 | |
|  3959             CONTINUE
 | |
|                END IF
 | |
| *
 | |
|                IF ( NR .NE. N )
 | |
|      $         CALL CLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
 | |
| *              .. save ...
 | |
| *
 | |
| *           .. this transposed copy should be better than naive
 | |
|                DO 1969 p = 1, NR - 1
 | |
|                   CALL CCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
 | |
|                   CALL CLACGV(NR-p+1, V(p,p), 1 )
 | |
|  1969          CONTINUE
 | |
|                V(NR,NR)=CONJG(V(NR,NR))
 | |
| *
 | |
|                CONDR2 = CONDR1
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              .. ill-conditioned case: second QRF with pivoting
 | |
| *              Note that windowed pivoting would be equally good
 | |
| *              numerically, and more run-time efficient. So, in
 | |
| *              an optimal implementation, the next call to CGEQP3
 | |
| *              should be replaced with eg. CALL CGEQPX (ACM TOMS #782)
 | |
| *              with properly (carefully) chosen parameters.
 | |
| *
 | |
| *              R1^* * P2 = Q2 * R2
 | |
|                DO 3003 p = 1, NR
 | |
|                   IWORK(N+p) = 0
 | |
|  3003          CONTINUE
 | |
|                CALL CGEQP3( N, NR, V, LDV, IWORK(N+1), CWORK(N+1),
 | |
|      $                  CWORK(2*N+1), LWORK-2*N, RWORK, IERR )
 | |
| **               CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 | |
| **     $              LWORK-2*N, IERR )
 | |
|                IF ( L2PERT ) THEN
 | |
|                   XSC = SQRT(SMALL)
 | |
|                   DO 3969 p = 2, NR
 | |
|                      DO 3968 q = 1, p - 1
 | |
|                         CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
 | |
|      $                                ZERO)
 | |
|                         IF ( ABS(V(q,p)) .LE. TEMP1 )
 | |
| *     $                     V(q,p) = TEMP1 * ( V(q,p) / ABS(V(q,p)) )
 | |
|      $                     V(q,p) = CTEMP
 | |
|  3968                CONTINUE
 | |
|  3969             CONTINUE
 | |
|                END IF
 | |
| *
 | |
|                CALL CLACPY( 'A', N, NR, V, LDV, CWORK(2*N+1), N )
 | |
| *
 | |
|                IF ( L2PERT ) THEN
 | |
|                   XSC = SQRT(SMALL)
 | |
|                   DO 8970 p = 2, NR
 | |
|                      DO 8971 q = 1, p - 1
 | |
|                         CTEMP=CMPLX(XSC*MIN(ABS(V(p,p)),ABS(V(q,q))),
 | |
|      $                               ZERO)
 | |
| *                        V(p,q) = - TEMP1*( V(q,p) / ABS(V(q,p)) )
 | |
|                         V(p,q) = - CTEMP
 | |
|  8971                CONTINUE
 | |
|  8970             CONTINUE
 | |
|                ELSE
 | |
|                   CALL CLASET( 'L',NR-1,NR-1,CZERO,CZERO,V(2,1),LDV )
 | |
|                END IF
 | |
| *              Now, compute R2 = L3 * Q3, the LQ factorization.
 | |
|                CALL CGELQF( NR, NR, V, LDV, CWORK(2*N+N*NR+1),
 | |
|      $               CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
 | |
| *              .. and estimate the condition number
 | |
|                CALL CLACPY( 'L',NR,NR,V,LDV,CWORK(2*N+N*NR+NR+1),NR )
 | |
|                DO 4950 p = 1, NR
 | |
|                   TEMP1 = SCNRM2( p, CWORK(2*N+N*NR+NR+p), NR )
 | |
|                   CALL CSSCAL( p, ONE/TEMP1, CWORK(2*N+N*NR+NR+p), NR )
 | |
|  4950          CONTINUE
 | |
|                CALL CPOCON( 'L',NR,CWORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
 | |
|      $              CWORK(2*N+N*NR+NR+NR*NR+1),RWORK,IERR )
 | |
|                CONDR2 = ONE / SQRT(TEMP1)
 | |
| *
 | |
| *
 | |
|                IF ( CONDR2 .GE. COND_OK ) THEN
 | |
| *                 .. save the Householder vectors used for Q3
 | |
| *                 (this overwrites the copy of R2, as it will not be
 | |
| *                 needed in this branch, but it does not overwritte the
 | |
| *                 Huseholder vectors of Q2.).
 | |
|                   CALL CLACPY( 'U', NR, NR, V, LDV, CWORK(2*N+1), N )
 | |
| *                 .. and the rest of the information on Q3 is in
 | |
| *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
 | |
|                END IF
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|             IF ( L2PERT ) THEN
 | |
|                XSC = SQRT(SMALL)
 | |
|                DO 4968 q = 2, NR
 | |
|                   CTEMP = XSC * V(q,q)
 | |
|                   DO 4969 p = 1, q - 1
 | |
| *                     V(p,q) = - TEMP1*( V(p,q) / ABS(V(p,q)) )
 | |
|                      V(p,q) = - CTEMP
 | |
|  4969             CONTINUE
 | |
|  4968          CONTINUE
 | |
|             ELSE
 | |
|                CALL CLASET( 'U', NR-1,NR-1, CZERO,CZERO, V(1,2), LDV )
 | |
|             END IF
 | |
| *
 | |
| *        Second preconditioning finished; continue with Jacobi SVD
 | |
| *        The input matrix is lower trinagular.
 | |
| *
 | |
| *        Recover the right singular vectors as solution of a well
 | |
| *        conditioned triangular matrix equation.
 | |
| *
 | |
|             IF ( CONDR1 .LT. COND_OK ) THEN
 | |
| *
 | |
|                CALL CGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U, LDU,
 | |
|      $              CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,RWORK,
 | |
|      $              LRWORK, INFO )
 | |
|                SCALEM  = RWORK(1)
 | |
|                NUMRANK = NINT(RWORK(2))
 | |
|                DO 3970 p = 1, NR
 | |
|                   CALL CCOPY(  NR, V(1,p), 1, U(1,p), 1 )
 | |
|                   CALL CSSCAL( NR, SVA(p),    V(1,p), 1 )
 | |
|  3970          CONTINUE
 | |
| 
 | |
| *        .. pick the right matrix equation and solve it
 | |
| *
 | |
|                IF ( NR .EQ. N ) THEN
 | |
| * :))             .. best case, R1 is inverted. The solution of this matrix
 | |
| *                 equation is Q2*V2 = the product of the Jacobi rotations
 | |
| *                 used in CGESVJ, premultiplied with the orthogonal matrix
 | |
| *                 from the second QR factorization.
 | |
|                   CALL CTRSM('L','U','N','N', NR,NR,CONE, A,LDA, V,LDV)
 | |
|                ELSE
 | |
| *                 .. R1 is well conditioned, but non-square. Adjoint of R2
 | |
| *                 is inverted to get the product of the Jacobi rotations
 | |
| *                 used in CGESVJ. The Q-factor from the second QR
 | |
| *                 factorization is then built in explicitly.
 | |
|                   CALL CTRSM('L','U','C','N',NR,NR,CONE,CWORK(2*N+1),
 | |
|      $                 N,V,LDV)
 | |
|                   IF ( NR .LT. N ) THEN
 | |
|                   CALL CLASET('A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV)
 | |
|                   CALL CLASET('A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV)
 | |
|                   CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
 | |
|                   END IF
 | |
|                   CALL CUNMQR('L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 | |
|      $                V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
 | |
| *
 | |
| *              The matrix R2 is inverted. The solution of the matrix equation
 | |
| *              is Q3^* * V3 = the product of the Jacobi rotations (appplied to
 | |
| *              the lower triangular L3 from the LQ factorization of
 | |
| *              R2=L3*Q3), pre-multiplied with the transposed Q3.
 | |
|                CALL CGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
 | |
|      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
 | |
|      $              RWORK, LRWORK, INFO )
 | |
|                SCALEM  = RWORK(1)
 | |
|                NUMRANK = NINT(RWORK(2))
 | |
|                DO 3870 p = 1, NR
 | |
|                   CALL CCOPY( NR, V(1,p), 1, U(1,p), 1 )
 | |
|                   CALL CSSCAL( NR, SVA(p),    U(1,p), 1 )
 | |
|  3870          CONTINUE
 | |
|                CALL CTRSM('L','U','N','N',NR,NR,CONE,CWORK(2*N+1),N,
 | |
|      $                    U,LDU)
 | |
| *              .. apply the permutation from the second QR factorization
 | |
|                DO 873 q = 1, NR
 | |
|                   DO 872 p = 1, NR
 | |
|                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 | |
|  872              CONTINUE
 | |
|                   DO 874 p = 1, NR
 | |
|                      U(p,q) = CWORK(2*N+N*NR+NR+p)
 | |
|  874              CONTINUE
 | |
|  873           CONTINUE
 | |
|                IF ( NR .LT. N ) THEN
 | |
|                   CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
 | |
|                   CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
 | |
|                   CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
 | |
|                END IF
 | |
|                CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 | |
|      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 | |
|             ELSE
 | |
| *              Last line of defense.
 | |
| * #:(          This is a rather pathological case: no scaled condition
 | |
| *              improvement after two pivoted QR factorizations. Other
 | |
| *              possibility is that the rank revealing QR factorization
 | |
| *              or the condition estimator has failed, or the COND_OK
 | |
| *              is set very close to ONE (which is unnecessary). Normally,
 | |
| *              this branch should never be executed, but in rare cases of
 | |
| *              failure of the RRQR or condition estimator, the last line of
 | |
| *              defense ensures that CGEJSV completes the task.
 | |
| *              Compute the full SVD of L3 using CGESVJ with explicit
 | |
| *              accumulation of Jacobi rotations.
 | |
|                CALL CGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
 | |
|      $              LDU, CWORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR,
 | |
|      $                         RWORK, LRWORK, INFO )
 | |
|                SCALEM  = RWORK(1)
 | |
|                NUMRANK = NINT(RWORK(2))
 | |
|                IF ( NR .LT. N ) THEN
 | |
|                   CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
 | |
|                   CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
 | |
|                   CALL CLASET('A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV)
 | |
|                END IF
 | |
|                CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 | |
|      $              V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 | |
| *
 | |
|                CALL CUNMLQ( 'L', 'C', NR, NR, NR, CWORK(2*N+1), N,
 | |
|      $              CWORK(2*N+N*NR+1), U, LDU, CWORK(2*N+N*NR+NR+1),
 | |
|      $              LWORK-2*N-N*NR-NR, IERR )
 | |
|                DO 773 q = 1, NR
 | |
|                   DO 772 p = 1, NR
 | |
|                      CWORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 | |
|  772              CONTINUE
 | |
|                   DO 774 p = 1, NR
 | |
|                      U(p,q) = CWORK(2*N+N*NR+NR+p)
 | |
|  774              CONTINUE
 | |
|  773           CONTINUE
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           Permute the rows of V using the (column) permutation from the
 | |
| *           first QRF. Also, scale the columns to make them unit in
 | |
| *           Euclidean norm. This applies to all cases.
 | |
| *
 | |
|             TEMP1 = SQRT(REAL(N)) * EPSLN
 | |
|             DO 1972 q = 1, N
 | |
|                DO 972 p = 1, N
 | |
|                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 | |
|   972          CONTINUE
 | |
|                DO 973 p = 1, N
 | |
|                   V(p,q) = CWORK(2*N+N*NR+NR+p)
 | |
|   973          CONTINUE
 | |
|                XSC = ONE / SCNRM2( N, V(1,q), 1 )
 | |
|                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 | |
|      $           CALL CSSCAL( N, XSC, V(1,q), 1 )
 | |
|  1972       CONTINUE
 | |
| *           At this moment, V contains the right singular vectors of A.
 | |
| *           Next, assemble the left singular vector matrix U (M x N).
 | |
|             IF ( NR .LT. M ) THEN
 | |
|                CALL CLASET('A', M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU)
 | |
|                IF ( NR .LT. N1 ) THEN
 | |
|                   CALL CLASET('A',NR,N1-NR,CZERO,CZERO,U(1,NR+1),LDU)
 | |
|                   CALL CLASET('A',M-NR,N1-NR,CZERO,CONE,
 | |
|      $                        U(NR+1,NR+1),LDU)
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           The Q matrix from the first QRF is built into the left singular
 | |
| *           matrix U. This applies to all cases.
 | |
| *
 | |
|             CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 | |
|      $           LDU, CWORK(N+1), LWORK-N, IERR )
 | |
| 
 | |
| *           The columns of U are normalized. The cost is O(M*N) flops.
 | |
|             TEMP1 = SQRT(REAL(M)) * EPSLN
 | |
|             DO 1973 p = 1, NR
 | |
|                XSC = ONE / SCNRM2( M, U(1,p), 1 )
 | |
|                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 | |
|      $          CALL CSSCAL( M, XSC, U(1,p), 1 )
 | |
|  1973       CONTINUE
 | |
| *
 | |
| *           If the initial QRF is computed with row pivoting, the left
 | |
| *           singular vectors must be adjusted.
 | |
| *
 | |
|             IF ( ROWPIV )
 | |
|      $          CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *        .. the initial matrix A has almost orthogonal columns and
 | |
| *        the second QRF is not needed
 | |
| *
 | |
|             CALL CLACPY( 'U', N, N, A, LDA, CWORK(N+1), N )
 | |
|             IF ( L2PERT ) THEN
 | |
|                XSC = SQRT(SMALL)
 | |
|                DO 5970 p = 2, N
 | |
|                   CTEMP = XSC * CWORK( N + (p-1)*N + p )
 | |
|                   DO 5971 q = 1, p - 1
 | |
| *                     CWORK(N+(q-1)*N+p)=-TEMP1 * ( CWORK(N+(p-1)*N+q) /
 | |
| *     $                                        ABS(CWORK(N+(p-1)*N+q)) )
 | |
|                      CWORK(N+(q-1)*N+p)=-CTEMP
 | |
|  5971             CONTINUE
 | |
|  5970          CONTINUE
 | |
|             ELSE
 | |
|                CALL CLASET( 'L',N-1,N-1,CZERO,CZERO,CWORK(N+2),N )
 | |
|             END IF
 | |
| *
 | |
|             CALL CGESVJ( 'U', 'U', 'N', N, N, CWORK(N+1), N, SVA,
 | |
|      $           N, U, LDU, CWORK(N+N*N+1), LWORK-N-N*N, RWORK, LRWORK,
 | |
|      $       INFO )
 | |
| *
 | |
|             SCALEM  = RWORK(1)
 | |
|             NUMRANK = NINT(RWORK(2))
 | |
|             DO 6970 p = 1, N
 | |
|                CALL CCOPY( N, CWORK(N+(p-1)*N+1), 1, U(1,p), 1 )
 | |
|                CALL CSSCAL( N, SVA(p), CWORK(N+(p-1)*N+1), 1 )
 | |
|  6970       CONTINUE
 | |
| *
 | |
|             CALL CTRSM( 'L', 'U', 'N', 'N', N, N,
 | |
|      $           CONE, A, LDA, CWORK(N+1), N )
 | |
|             DO 6972 p = 1, N
 | |
|                CALL CCOPY( N, CWORK(N+p), N, V(IWORK(p),1), LDV )
 | |
|  6972       CONTINUE
 | |
|             TEMP1 = SQRT(REAL(N))*EPSLN
 | |
|             DO 6971 p = 1, N
 | |
|                XSC = ONE / SCNRM2( N, V(1,p), 1 )
 | |
|                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 | |
|      $            CALL CSSCAL( N, XSC, V(1,p), 1 )
 | |
|  6971       CONTINUE
 | |
| *
 | |
| *           Assemble the left singular vector matrix U (M x N).
 | |
| *
 | |
|             IF ( N .LT. M ) THEN
 | |
|                CALL CLASET( 'A',  M-N, N, CZERO, CZERO, U(N+1,1), LDU )
 | |
|                IF ( N .LT. N1 ) THEN
 | |
|                   CALL CLASET('A',N,  N1-N, CZERO, CZERO,  U(1,N+1),LDU)
 | |
|                   CALL CLASET( 'A',M-N,N1-N, CZERO, CONE,U(N+1,N+1),LDU)
 | |
|                END IF
 | |
|             END IF
 | |
|             CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 | |
|      $           LDU, CWORK(N+1), LWORK-N, IERR )
 | |
|             TEMP1 = SQRT(REAL(M))*EPSLN
 | |
|             DO 6973 p = 1, N1
 | |
|                XSC = ONE / SCNRM2( M, U(1,p), 1 )
 | |
|                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 | |
|      $            CALL CSSCAL( M, XSC, U(1,p), 1 )
 | |
|  6973       CONTINUE
 | |
| *
 | |
|             IF ( ROWPIV )
 | |
|      $         CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        end of the  >> almost orthogonal case <<  in the full SVD
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *        This branch deploys a preconditioned Jacobi SVD with explicitly
 | |
| *        accumulated rotations. It is included as optional, mainly for
 | |
| *        experimental purposes. It does perform well, and can also be used.
 | |
| *        In this implementation, this branch will be automatically activated
 | |
| *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
 | |
| *        to be greater than the overflow threshold. This is because the
 | |
| *        a posteriori computation of the singular vectors assumes robust
 | |
| *        implementation of BLAS and some LAPACK procedures, capable of working
 | |
| *        in presence of extreme values, e.g. when the singular values spread from
 | |
| *        the underflow to the overflow threshold. 
 | |
| *
 | |
|          DO 7968 p = 1, NR
 | |
|             CALL CCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 | |
|             CALL CLACGV( N-p+1, V(p,p), 1 )
 | |
|  7968    CONTINUE
 | |
| *
 | |
|          IF ( L2PERT ) THEN
 | |
|             XSC = SQRT(SMALL/EPSLN)
 | |
|             DO 5969 q = 1, NR
 | |
|                CTEMP = CMPLX(XSC*ABS( V(q,q) ),ZERO)
 | |
|                DO 5968 p = 1, N
 | |
|                   IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )
 | |
|      $                .OR. ( p .LT. q ) )
 | |
| *     $                V(p,q) = TEMP1 * ( V(p,q) / ABS(V(p,q)) )
 | |
|      $                V(p,q) = CTEMP
 | |
|                   IF ( p .LT. q ) V(p,q) = - V(p,q)
 | |
|  5968          CONTINUE
 | |
|  5969       CONTINUE
 | |
|          ELSE
 | |
|             CALL CLASET( 'U', NR-1, NR-1, CZERO, CZERO, V(1,2), LDV )
 | |
|          END IF
 | |
| 
 | |
|          CALL CGEQRF( N, NR, V, LDV, CWORK(N+1), CWORK(2*N+1),
 | |
|      $        LWORK-2*N, IERR )
 | |
|          CALL CLACPY( 'L', N, NR, V, LDV, CWORK(2*N+1), N )
 | |
| *
 | |
|          DO 7969 p = 1, NR
 | |
|             CALL CCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
 | |
|             CALL CLACGV( NR-p+1, U(p,p), 1 )
 | |
|  7969    CONTINUE
 | |
| 
 | |
|          IF ( L2PERT ) THEN
 | |
|             XSC = SQRT(SMALL/EPSLN)
 | |
|             DO 9970 q = 2, NR
 | |
|                DO 9971 p = 1, q - 1
 | |
|                   CTEMP = CMPLX(XSC * MIN(ABS(U(p,p)),ABS(U(q,q))),
 | |
|      $                           ZERO)
 | |
| *                  U(p,q) = - TEMP1 * ( U(q,p) / ABS(U(q,p)) )
 | |
|                   U(p,q) = - CTEMP
 | |
|  9971          CONTINUE
 | |
|  9970       CONTINUE
 | |
|          ELSE
 | |
|             CALL CLASET('U', NR-1, NR-1, CZERO, CZERO, U(1,2), LDU )
 | |
|          END IF
 | |
| 
 | |
|          CALL CGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,
 | |
|      $        N, V, LDV, CWORK(2*N+N*NR+1), LWORK-2*N-N*NR,
 | |
|      $         RWORK, LRWORK, INFO )
 | |
|          SCALEM  = RWORK(1)
 | |
|          NUMRANK = NINT(RWORK(2))
 | |
| 
 | |
|          IF ( NR .LT. N ) THEN
 | |
|             CALL CLASET( 'A',N-NR,NR,CZERO,CZERO,V(NR+1,1),LDV )
 | |
|             CALL CLASET( 'A',NR,N-NR,CZERO,CZERO,V(1,NR+1),LDV )
 | |
|             CALL CLASET( 'A',N-NR,N-NR,CZERO,CONE,V(NR+1,NR+1),LDV )
 | |
|          END IF
 | |
| 
 | |
|          CALL CUNMQR( 'L','N',N,N,NR,CWORK(2*N+1),N,CWORK(N+1),
 | |
|      $        V,LDV,CWORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 | |
| *
 | |
| *           Permute the rows of V using the (column) permutation from the
 | |
| *           first QRF. Also, scale the columns to make them unit in
 | |
| *           Euclidean norm. This applies to all cases.
 | |
| *
 | |
|             TEMP1 = SQRT(REAL(N)) * EPSLN
 | |
|             DO 7972 q = 1, N
 | |
|                DO 8972 p = 1, N
 | |
|                   CWORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 | |
|  8972          CONTINUE
 | |
|                DO 8973 p = 1, N
 | |
|                   V(p,q) = CWORK(2*N+N*NR+NR+p)
 | |
|  8973          CONTINUE
 | |
|                XSC = ONE / SCNRM2( N, V(1,q), 1 )
 | |
|                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 | |
|      $           CALL CSSCAL( N, XSC, V(1,q), 1 )
 | |
|  7972       CONTINUE
 | |
| *
 | |
| *           At this moment, V contains the right singular vectors of A.
 | |
| *           Next, assemble the left singular vector matrix U (M x N).
 | |
| *
 | |
|          IF ( NR .LT. M ) THEN
 | |
|             CALL CLASET( 'A',  M-NR, NR, CZERO, CZERO, U(NR+1,1), LDU )
 | |
|             IF ( NR .LT. N1 ) THEN
 | |
|                CALL CLASET('A',NR,  N1-NR, CZERO, CZERO,  U(1,NR+1),LDU)
 | |
|                CALL CLASET('A',M-NR,N1-NR, CZERO, CONE,U(NR+1,NR+1),LDU)
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          CALL CUNMQR( 'L', 'N', M, N1, N, A, LDA, CWORK, U,
 | |
|      $        LDU, CWORK(N+1), LWORK-N, IERR )
 | |
| *
 | |
|             IF ( ROWPIV )
 | |
|      $         CALL CLASWP( N1, U, LDU, 1, M-1, IWORK(IWOFF+1), -1 )
 | |
| *
 | |
| *
 | |
|          END IF
 | |
|          IF ( TRANSP ) THEN
 | |
| *           .. swap U and V because the procedure worked on A^*
 | |
|             DO 6974 p = 1, N
 | |
|                CALL CSWAP( N, U(1,p), 1, V(1,p), 1 )
 | |
|  6974       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *     end of the full SVD
 | |
| *
 | |
| *     Undo scaling, if necessary (and possible)
 | |
| *
 | |
|       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
 | |
|          CALL SLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
 | |
|          USCAL1 = ONE
 | |
|          USCAL2 = ONE
 | |
|       END IF
 | |
| *
 | |
|       IF ( NR .LT. N ) THEN
 | |
|          DO 3004 p = NR+1, N
 | |
|             SVA(p) = ZERO
 | |
|  3004    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RWORK(1) = USCAL2 * SCALEM
 | |
|       RWORK(2) = USCAL1
 | |
|       IF ( ERREST ) RWORK(3) = SCONDA
 | |
|       IF ( LSVEC .AND. RSVEC ) THEN
 | |
|          RWORK(4) = CONDR1
 | |
|          RWORK(5) = CONDR2
 | |
|       END IF
 | |
|       IF ( L2TRAN ) THEN
 | |
|          RWORK(6) = ENTRA
 | |
|          RWORK(7) = ENTRAT
 | |
|       END IF
 | |
| *
 | |
|       IWORK(1) = NR
 | |
|       IWORK(2) = NUMRANK
 | |
|       IWORK(3) = WARNING
 | |
|       IF ( TRANSP ) THEN
 | |
|           IWORK(4) =  1 
 | |
|       ELSE
 | |
|           IWORK(4) = -1
 | |
|       END IF 
 | |
|       
 | |
| *
 | |
|       RETURN
 | |
| *     ..
 | |
| *     .. END OF CGEJSV
 | |
| *     ..
 | |
|       END
 | |
| *
 |