272 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGTTS2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtts2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtts2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtts2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            ITRANS, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGTTS2 solves one of the systems of equations
 | 
						|
*>    A*X = B  or  A**T*X = B,
 | 
						|
*> with a tridiagonal matrix A using the LU factorization computed
 | 
						|
*> by SGTTRF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] ITRANS
 | 
						|
*> \verbatim
 | 
						|
*>          ITRANS is INTEGER
 | 
						|
*>          Specifies the form of the system of equations.
 | 
						|
*>          = 0:  A * X = B  (No transpose)
 | 
						|
*>          = 1:  A**T* X = B  (Transpose)
 | 
						|
*>          = 2:  A**T* X = B  (Conjugate transpose = Transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DL
 | 
						|
*> \verbatim
 | 
						|
*>          DL is REAL array, dimension (N-1)
 | 
						|
*>          The (n-1) multipliers that define the matrix L from the
 | 
						|
*>          LU factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The n diagonal elements of the upper triangular matrix U from
 | 
						|
*>          the LU factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DU
 | 
						|
*> \verbatim
 | 
						|
*>          DU is REAL array, dimension (N-1)
 | 
						|
*>          The (n-1) elements of the first super-diagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DU2
 | 
						|
*> \verbatim
 | 
						|
*>          DU2 is REAL array, dimension (N-2)
 | 
						|
*>          The (n-2) elements of the second super-diagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | 
						|
*>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | 
						|
*>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | 
						|
*>          required.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the matrix of right hand side vectors B.
 | 
						|
*>          On exit, B is overwritten by the solution vectors X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realGTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGTTS2( ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            ITRANS, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IP, J
 | 
						|
      REAL               TEMP
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( ITRANS.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Solve A*X = B using the LU factorization of A,
 | 
						|
*        overwriting each right hand side vector with its solution.
 | 
						|
*
 | 
						|
         IF( NRHS.LE.1 ) THEN
 | 
						|
            J = 1
 | 
						|
   10       CONTINUE
 | 
						|
*
 | 
						|
*           Solve L*x = b.
 | 
						|
*
 | 
						|
            DO 20 I = 1, N - 1
 | 
						|
               IP = IPIV( I )
 | 
						|
               TEMP = B( I+1-IP+I, J ) - DL( I )*B( IP, J )
 | 
						|
               B( I, J ) = B( IP, J )
 | 
						|
               B( I+1, J ) = TEMP
 | 
						|
   20       CONTINUE
 | 
						|
*
 | 
						|
*           Solve U*x = b.
 | 
						|
*
 | 
						|
            B( N, J ) = B( N, J ) / D( N )
 | 
						|
            IF( N.GT.1 )
 | 
						|
     $         B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
 | 
						|
     $                       D( N-1 )
 | 
						|
            DO 30 I = N - 2, 1, -1
 | 
						|
               B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
 | 
						|
     $                     B( I+2, J ) ) / D( I )
 | 
						|
   30       CONTINUE
 | 
						|
            IF( J.LT.NRHS ) THEN
 | 
						|
               J = J + 1
 | 
						|
               GO TO 10
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
            DO 60 J = 1, NRHS
 | 
						|
*
 | 
						|
*              Solve L*x = b.
 | 
						|
*
 | 
						|
               DO 40 I = 1, N - 1
 | 
						|
                  IF( IPIV( I ).EQ.I ) THEN
 | 
						|
                     B( I+1, J ) = B( I+1, J ) - DL( I )*B( I, J )
 | 
						|
                  ELSE
 | 
						|
                     TEMP = B( I, J )
 | 
						|
                     B( I, J ) = B( I+1, J )
 | 
						|
                     B( I+1, J ) = TEMP - DL( I )*B( I, J )
 | 
						|
                  END IF
 | 
						|
   40          CONTINUE
 | 
						|
*
 | 
						|
*              Solve U*x = b.
 | 
						|
*
 | 
						|
               B( N, J ) = B( N, J ) / D( N )
 | 
						|
               IF( N.GT.1 )
 | 
						|
     $            B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
 | 
						|
     $                          D( N-1 )
 | 
						|
               DO 50 I = N - 2, 1, -1
 | 
						|
                  B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DU2( I )*
 | 
						|
     $                        B( I+2, J ) ) / D( I )
 | 
						|
   50          CONTINUE
 | 
						|
   60       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Solve A**T * X = B.
 | 
						|
*
 | 
						|
         IF( NRHS.LE.1 ) THEN
 | 
						|
*
 | 
						|
*           Solve U**T*x = b.
 | 
						|
*
 | 
						|
            J = 1
 | 
						|
   70       CONTINUE
 | 
						|
            B( 1, J ) = B( 1, J ) / D( 1 )
 | 
						|
            IF( N.GT.1 )
 | 
						|
     $         B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
 | 
						|
            DO 80 I = 3, N
 | 
						|
               B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-DU2( I-2 )*
 | 
						|
     $                     B( I-2, J ) ) / D( I )
 | 
						|
   80       CONTINUE
 | 
						|
*
 | 
						|
*           Solve L**T*x = b.
 | 
						|
*
 | 
						|
            DO 90 I = N - 1, 1, -1
 | 
						|
               IP = IPIV( I )
 | 
						|
               TEMP = B( I, J ) - DL( I )*B( I+1, J )
 | 
						|
               B( I, J ) = B( IP, J )
 | 
						|
               B( IP, J ) = TEMP
 | 
						|
   90       CONTINUE
 | 
						|
            IF( J.LT.NRHS ) THEN
 | 
						|
               J = J + 1
 | 
						|
               GO TO 70
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
            DO 120 J = 1, NRHS
 | 
						|
*
 | 
						|
*              Solve U**T*x = b.
 | 
						|
*
 | 
						|
               B( 1, J ) = B( 1, J ) / D( 1 )
 | 
						|
               IF( N.GT.1 )
 | 
						|
     $            B( 2, J ) = ( B( 2, J )-DU( 1 )*B( 1, J ) ) / D( 2 )
 | 
						|
               DO 100 I = 3, N
 | 
						|
                  B( I, J ) = ( B( I, J )-DU( I-1 )*B( I-1, J )-
 | 
						|
     $                        DU2( I-2 )*B( I-2, J ) ) / D( I )
 | 
						|
  100          CONTINUE
 | 
						|
               DO 110 I = N - 1, 1, -1
 | 
						|
                  IF( IPIV( I ).EQ.I ) THEN
 | 
						|
                     B( I, J ) = B( I, J ) - DL( I )*B( I+1, J )
 | 
						|
                  ELSE
 | 
						|
                     TEMP = B( I+1, J )
 | 
						|
                     B( I+1, J ) = B( I, J ) - DL( I )*TEMP
 | 
						|
                     B( I, J ) = TEMP
 | 
						|
                  END IF
 | 
						|
  110          CONTINUE
 | 
						|
  120       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     End of SGTTS2
 | 
						|
*
 | 
						|
      END
 |